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Executive Summary 

This document contains the specification of the services that are going to be developed 
within tasks "T2.2.1 Post Querying Processing", "T2.2.2 Metadata based ranking" and 
"T2.2.3 Text Indexing and Retrieval". All these tasks fall under the responsibility of CNR, but 
their detailed definition is the result of an agreement reached with the other partners of the 
ASSETS project having a technical role. For each activity, a scientific analysis and a detailed 
technical specification at the API level is provided. 

Regarding task "T2.2.1 Post Querying Processing", in Section 1 we report on the state of the 
art in query recommendation systems, and we discuss an effective query suggestion 
algorithm we are going to integrate into the ASSETS platform. Such recommendation 
algorithm has proven to be effective on standard Web query logs and evaluation datasets, 
and we expect that a similar performance can be achieved in the Europeana case.  

Section 2 deals instead with effective techniques for ranking metadata objects in the 
Europeana context as planned within task "T2.2.2 Metadata based ranking". We first review 
the state of the art in multi-field document retrieval, and then we provide a specification of 
an advanced metadata based ranking to be included into the ASSETS engine. In particular, 
we propose to adopt the BM25F ranking function, and to exploit machine learning 
algorithms to best tune its parameters. 

Both the previous activities require models about user behaviours and preferences to be 
exploited. Since the knowledge needed to build these models can be mined from the logs 
storing past user activities, in Section 3 we discuss the deep analysis conducted on 
Europeana query logs in order to devise opportunities for improving query suggestion and 
the Europeana ranking function. The software support to query log cleaning and mining are 
the subject of activities within task "T2.2.3 Text Indexing and Retrieval", that will provide an 
ensemble of tools for storing, mining and searching Europeana usage information. 
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1. T2.2.1: Post Querying Processing 

 

Providing users of Web Search Engines (WSEs) systems with suggestions is a common 
practice aimed at “driving” users toward the information bits they may need. Suggestions 
are normally provided as queries that are, to some extent, related to those recently 
submitted by the user. The generation process of such queries, basically, exploits the 
expertise of “skilled” users to help inexperienced ones. The knowledge mined for making 
this possible is contained in WSEs’ logs which store all the past interactions of users with the 
system. The more the users that satisfied the same information need in the past, the more 
precise and effective the related suggestions provided by the query recommendation 
technique. On the other hand, to generate effective suggestions for queries that are rare or 
have never been seen in the past is an open issue poorly addressed by state-of-the-art query 
suggestion techniques. 

In the past months we conducted a thorough preliminary study on its query log to 
understand the common behaviours of Europeana users, and to evaluate opportunities for 
integrating an effective query suggestion service into ASSETS. This analysis, which is 
reported in Section 3.1, justifies the adoption of such a solution since it shows that many 
users do not succeed in finding promptly the results they are looking for.  

Below, we report on the state of the art in query recommendation systems, and we propose 
to include into ASSETS an effective query suggestion algorithm that can improve the users' 
interaction with the ASSETS (and Europeana) search portal. Such recommendation algorithm 
was proven to be effective on standard Web query logs and evaluation datasets. Finally, we 
provide a specification of the software to be integrated into the ASSETS platform. 

1.1 Search Shortcuts: an effective query suggestion algorithm 

1.1.1 Related work 

The problem of query suggestion is related to two related research fields that have been 
traditionally addressed from different points of view: query suggestion algorithms and 
recommender systems. Recommender systems are used in several domains, being 
especially successful in electronic commerce. They can be divided in two broad classes: 
those based on content filtering, and those on collaborative filtering. As the name suggests, 
content filtering approaches base their recommendations on the content of the items to be 
suggested. On the other side, collaborative filtering solutions are based on the preferences 
expressed by the users. 

Due to their characteristic features, query suggestion calls for specifically tailored algorithm 
being able to exploit all the additional information available in this scenario, such users 
session, click, query results, etc. Techniques proposed during last years are very different, 
yet they have in common the exploitation of usage information recorded in query logs [S10]. 
Many approaches extract the information used from the plain set of queries recorded in the 
log, although there are several works that take into account the chains of subsequent 
queries that belong to the same search session. The two most effective approaches are the 
ones based on the concept of Cover Graph (CG) and Query Flow Graph(QFG), which we 
described in the following. 
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The authors of [BT07] exploit click-through data as a way to provide recommendations. The 
method is based on the concept of Cover Graph. A CG is a bipartite graph of queries and 
URLs, where a query q and an URL u are connected if a user issued q and clicked on u that 
was an answer for the query. Suggestions for a query q are thus obtained by accessing the 
corresponding node in the CG and by extracting the related queries sharing more URLs. The 
sharing of clicked URLs results to be very effective for devising related queries. 

[BB+08] introduced the concept of Query Flow Graph (QFG), an aggregated representation 
of the information contained in a query log. A QFG is a directed graph in which nodes are 
queries, and the edge connecting node q1 to q2 is weighted by the probability that users 
issue query q2 after issuing q1. Authors highlight the utility of the model in two concrete 
applications, namely, devising logical sessions and generating query recommendation. The 
authors refine the previous studies in [BB+09a] and [BB+09b] where a query suggestion 
scheme based on a random walk with restart model on the QFG is proposed. 

We took into consideration both two algorithms based on CG and QFG to validate our 
proposal for Europeana. 

1.1.2 Search Shortcuts Problem definition 

We formalize the problem of recommending good queries as a problem of generating 
"search shortcuts", where we call shortcuts those queries that can help the user to access 
earlier the content she is looking for. 

The Search Shortcut Problem (SSP) is formally defined as a problem related to the 
recommendation of queries in search engines and the potential reductions in the users 
session length. This problem formulation allows a precise goal for query suggestion to be 
devised: recommend queries that allowed “similar” users, i.e., users which in the past 
followed a similar search process, to successfully find early the information they were 
looking for. The problem has a nice parallel in computer systems: prefetching. Similarly to 
prefetching, search shortcuts anticipate requests to the search engine with suggestion of 
queries that a user would have likely issued at the end of her session. 

Let U be the set of users of a Web Search Engine (WSE) whose activities are recorded in a 
query log QL, and Q be the set of queries in QL. We suppose QL is pre-processed by using 
some session splitting method (e.g. [JK08],[LO+11]) in order to extract query sessions, i.e., 
sequences of queries which are related to the same user search task. Formally, we denote 
by S the set of all sessions in QL, and σu a session issued by user u. Moreover, let us denote 
with σi

u the i-th query of σu. For a session σu of length n its final query is the query σn
u, i.e. 

the last query issued by u in the session. To simplify the notation, in the following we will 
drop the superscript u whenever the user u is clear from the context. 

We say that a session σ is satisfactory if and only if the user has clicked on at least one link 
shown in the result page returned by the WSE for the final query σn, unsatisfactory 
otherwise. Clearly, it may happen to have a user click leading to an unsatisfactory result 
page, but we can safely rely on the so called "wisdom of the crowds": good queries generate 
a larger number of clicks, thus having a much significant impact on the recommendation 
algorithm. 

Finally, given a session σ of length n we denote σt| the head of σ, i.e., the sequence of the 
first t, t < n, queries, and σ|t the tail of σ given by the sequence of the remaining n − t 
queries. 

Definition 1. We define a k-way shortcut a function h taking as argument the head of a 
session σt|, and returning as result a set h(σt|) of k queries belonging to Q. 
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Such definition allows a simple ex-post evaluation methodology to be introduced by means 
of the following similarity function: 

Definition 2. Given a satisfactory session σ ∈ S of length n, and a k-way shortcut function 
h, the similarity between h(σt|) and a tail σ|t is defined as: 

 

where f(m) is a monotonic increasing function, and function [q=σm]=1 if and only if q is equal 
to σm. 

In order to evaluate the effectiveness of a given shortcut function h, the average value of s 
on all satisfactory sessions in S can be computed . 

Definition 3. Given the set of all possible shortcut functions H, we define Search Shortcut 
Problem (SSP) the problem of finding a function h ∈ H which maximizes the sum of the 
values computed according to Definition 2 on all satisfactory sessions in S. 

A difference between search shortcuts and query suggestion is actually represented by the 
function [q=(σ|t)m], Definition 2. By relaxing the strict equality requirement, and by replacing 
it with a similarity relation – i.e., [q~(σ|t)m]=1 if and only if the similarity between q and σm is 
greater than some threshold – the problem reduces, basically, to query suggestion. By 
defining appropriate similarity functions, Definition 2 the can be thus used to evaluate query 
suggestion effectiveness as well. 

Finally, we should consider the influence the function f(m) has in the definition of scoring 
functions. Actually, depending on how f is chosen, different features of a shortcut 
generating algorithm may be tested. For instance, by setting f(m) to be the constant 
function f(m)=c, we measure simply the number of queries in common between the query 
shortcut set and the queries submitted by the user. A non-constant function can be used to 
give an higher score to queries that a user would have submitted later in the session, i.e. 
queries closer to the last successful one. An exponential function f(m)=e

m can be exploited 
instead to assign an higher score to shortcuts suggested early. Smoother f functions can be 
used to modulate positional effects. 

1.1.3 Generating query suggestions with Search Shortcuts 

Inspired by the above SSP, we define a novel algorithm that aims to generate suggestions 
containing only those queries appearing as final in satisfactory sessions. The goal is to 
suggest queries having a high potentiality of being useful for people to reach their initial 
goal. As hinted by the problem definition, suggesting queries appearing as final in 
satisfactory sessions, in our view is a good strategy to accomplish this task. In order to 
validate this hypothesis, we analyzed the Microsoft RFP 2006 dataset, a query log from the 
MSN Search engine containing about 15 million queries sampled over one month of 2006 
(hereinafter QL). 

First, we measured that the number of distinct queries that appear as final query in 
satisfactory sessions of QL is relatively small if compared to the overall number of submitted 
queries: only about 10% of the total number of distinct queries in QL occur in the last 
position of satisfactory user sessions. As expected, the distribution of the occurrences of 
such final queries in satisfactory user sessions is quite skewed (as shown in Figure 1), thus 
confirming once more that the set of final queries actually used by people is limited. 
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queries which are final in some satisfactory sessions may obviously appear also in positions 
different from the last in other satisfactory sessions. We verified that, when this happens, 
these queries appear much more frequently in positions very close to the final one. About 
60% of the distinct queries appearing in the penultimate position of satisfactory sessions are 
also among the final queries; about 40% in positions second to the last; 20% as third to the 
last, and so on. We can thus argue that final queries are usually close to the achievement of 
the user information goal. We consider these queries as highly valued and high quality short 
pieces of text expressing actual user needs. 

The SSP algorithm we propose works by computing, efficiently, similarities between partial 
user sessions (the one currently performed) and historical satisfactory sessions recorded in a 
query log. Final queries of most similar satisfactory sessions are suggested to users as search 
shortcuts. 

Let σ′ be the current session performed by the user, and let us consider the sequence τ of 
the concatenation of all terms with possible repetitions appearing in σ′t|, i.e. the head of 
length t of session σ′. We now compute the value of a scoring function δ(τ, σ

s
), which 

measures the similarity between the set of terms τ and current queries (i.e. queries used in 
the current session) and, for each satisfactory session. Intuitively, this similarity value 
measures to which extent a previous session overlaps with the user’s information need 
expressed so far (represented as a bag-of-words computed through the concatenation of 
terms τ). The sessions are ranked according to δ scores, and final queries of the top n ranked 
sessions are used in the list of query suggestions. It is obvious that we may have different 
recommendation methods, depending on how the function δ is chosen. In our particular 
case, we chose δ to be computed with the similarity function used in the BM25 algorithm 
[RZ09]. We opt for an IR-like metric, because we want to take increase the importace of high 
discriminative words found in the context of the past sessions. BM25, and other IR-related 
metrics, have been designed specifically to leverage this aspect in the context of query or 
documents similarity computation. The shortcuts generation problem has been, thus, 
reduced to the information retrieval task of finding highly similar sessions in response to a 

Figure 1 Popularity of final queries in satisfactory sessions 
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given sequence of queries. In our current experiments, we compute the similarity function δ 
only on the current query issued by the user instead of using the whole head of the session. 
This will allow us to compare the results of our work with other algorithms which produce 
recommendations starting from a single query. 

The idea described above is thus translated into the following process. For each unique final 

query qf contained in satisfactory sessions we define what we have called a virtual 

document identified by its title and its content. The title, i.e. the identifier of the document, 
is exactly query string qf . The content of the virtual document is instead composed of all the 
terms that have appeared in queries of all the satisfactory sessions ending with qf . At the 
end of this procedure we have a set of virtual documents, one for each distinct final query 
occurring in some satisfactory sessions. Just to make things more clear, let us consider a toy 
example. Consider the two following satisfactory sessions: (dante alighieri→ divina 

commedia→ paolo and francesca, and (divina commedia→ inferno canto V→ paolo and 

francesca). We create the virtual document identified by title paolo and francesca and 
whose content is the text (dante alighieri divina commedia divina commedia inferno canto 

V). The virtual document actually contains also repetitions of the same term that are 
considered in the context of the BM25 ranking metrics. All virtual documents are indexed 
with the preferred Information Retrieval system, and generating shortcuts for a given user 
session σ′ becomes simply processing the query σ′t| over the inverted file indexing such 
virtual documents. We know that processing queries over inverted indexes is very fast and 
scalable, and these important characteristics are inherited by our query suggestion 
technique as well. 

The other important feature of our query suggestion technique is its robustness with 
respect to rare and singleton queries. Singleton queries account for almost 50% of the 
submitted queries [S10], and their presence causes the issue of the sparseness of models 
[AT05]. Since we match τ with the virtual documents obtained by concatenating all the 
queries in each session, even previously unseen queries can match a virtual document and 
generate high quality suggestions.  Most suggestion algorithms, instead, can match only 
previously submitted queries. Therefore we can generate suggestions for queries in the long 
tail of the distribution those terms have some context in the query log used to build the 
model. 

1.1.4 Quality Assessment 

Evaluating the effectiveness of a recommender system is a difficult task. We tried to avoid 
the cost of expensive user-studies, and to exploit the implicit feedback present in the query 
log. Thus, in our experimental evaluation we use the similarity metric defined in Definition 
2, and we compute the average value of similarity over a set of satisfactory sessions. This 
performance index objectively measures the effectiveness of a query suggestion algorithm 
in foreseeing the satisfactory query for the session. 

In particular, we measured the values of this performance index over suggestions generated 
by using our Search Shortcuts (SS) solution and by using in exactly the same conditions two 
other state-of-the-art algorithms: Cover Graph (CG) proposed by [BT07] and Query Flow 
Graph (QFG) proposed by [BB+09a]. These algorithms are recent and highly reputed 
representatives of the best practice in the field of query recommendation.  

Related to the evaluation methodology based on user-studies, we propose an approach that 
measures coverage and the effectiveness of suggestions against a manually assessed and 
publicly available dataset. To this purpose, we exploited the query topics and the human 
judgements provided by NIST for running the TREC 2009 Web Track’s Diversity Task 
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(http://trec.nist.gov/data/web09.html). For the purposes of the TREC diversity track, NIST 
provided 50 queries to a group of human assessors. Assuming each TREC query as a topic, 
assessors were asked to identify a representative set of subtopics covering the whole 
spectrum of different user needs/intentions. Subtopics are based on information extracted 
from the logs of a commercial search engine, and are roughly balanced in terms of 
popularity. Obviously the queries chosen are very different and cover different search 
aspects (e.g. difficulty, ambiguity, and/or faceted search) in order to allow the overall 
performance of diversification methods to be evaluated and compared. Since diversity and 
topic coverage are key issues also for the query recommendation task [MLK10], we propose 
to use the same third-party dataset for evaluating query suggestion effectiveness as well. 

Let’s now introduce the definitions of coverage, and effectiveness. 

Definition 4 (Coverage). Given a query topic A with n subtopics {a1, a2, . . . , an}, and a 
query suggestion technique T, we say that T has coverage equal to c if n·c subtopics match 
suggestions generated by T.  

Explanatory example: A coverage of 0.8 for the top-10 suggestions generated for a query 
q having 5 subtopics means that 4 subtopics of q are covered by at least one suggestion. 

Definition 5 (Effectiveness). Given a query topic A with n subtopics {a1, a2, . . . , an}, and a 
query suggestion technique T generating k suggestions, we say that T has effectiveness 
equal to e if e·k suggestions cover at least one subtopic. An effectiveness of 0.1 on the top-
10 suggestions generated for a query q means that only one suggestion is relevant for one 
of the subtopics of q. 

The methodology just described has some net advantages. It is based on a publicly-available 
test collection which is provided by a well reputed third-party organization. Moreover, it 
grants to all the researchers the possibility of measuring the performance of their solution 
under exactly the same conditions, with the same dataset and the same reproducible 
evaluation criterion. 

The experiments were conducted using the Microsoft RFP 2006 query log which was 
preliminary pre-processed by converting all queries to lowercase, and by removing stop-
words and punctuation/control characters. The queries in the log were then sorted by user 
and timestamp, and segmented into sessions on the basis of a splitting algorithm which uses 
a time discriminator.  We grouped into the same session all the queries issued by the same 
users in a time span of 30 minutes. Noisy sessions (i.e. likely performed by software robots) 
were removed. The remaining entries correspond to approximately 9M sessions. These 
were split into two subsets: training set with 6M sessions and a test set with the remaining 
3M sessions. The training log was used to build the recommendation models needed by CG 
and QFG and used for performance comparison.  

Instead, to implement our SS solution we extracted satisfactory sessions present in the 
training log and grouped them on the basis of the final query. Then, for each distinct final 
query its corresponding virtual document was built with the terms (with possible 
repetitions) belonging to all the queries of all the associated satisfactory sessions. Finally, by 
means of the Terrier search engine1, we indexed the resulting 1,191,143 virtual documents. 
The possibility of processing queries on such index is provided to interested readers through 
a simple web interface2. The web-based wrapper accepts user queries, interact with Terrier 
to get the list of final queries (id of virtual documents) provided as top-k results, and 

                                                             
1 See http://terrier.org/ 

2 See http://searchshortcuts.isti.cnr.it 
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retrieves and visualizes the associated query strings. 

We used Definition 2 to measure the similarity between the suggestions generated by SS, 
CG, and QFG for the first queries issued by a user during a satisfactory session belonging to 
the test set, and the final queries actually submitted by the same user during the same 
session. We conducted experiments by setting the number k of suggestions generated to 10, 
and, we chose the exponential function f(m)=e

m to assign an higher score to shortcuts 
suggested early. Moreover, the length t of the head of the session was set to ⌈n/2⌉, where 
n is the length of the session considered. Finally, the metric used to assess the similarity 
between two queries was the Jaccard index computed over the set of tri-grams of 
characters contained in the queries [JJJ07], while the similarity threshold used was 0.9. 

Due to the long execution times required by CG, and QFG for generating suggestions, it was 
not possible to evaluate suggestion effectiveness by processing all the satisfactory sessions 
in the test set. We thus considered a sample of the test set constituted by a randomly 
selected group of 100 satisfactory sessions having a length strictly greater than 3. The 
histogram in Figure 2 shows the distribution of the number of sessions vs. the quality of the 
top-10 recommendations produced by the three algorithms. SS produces recommendations 
having a quality score greater than 60% for 18 sessions out of 100. Moreover, in 36 cases 
out of 100, SS generates useful suggestions when its competitors CG and QFG fails to 
produce even a single effective suggestion. Indeed, CG and QFG can hardly propose good 
recommendation of less frequent queries, as discussed later. On average, over the 100 
sessions considered, SS obtains an average quality score equal to 0.32, while QFG and CG 
achieves 0.15 and 0.10, respectively. 

 

Figure 2 Query suggestion quality 

 

The relevance of the suggestions generated by SS, CG, and QFG w.r.t. the TREC query 
subtopics was manually assessed. The evaluation consisted in asking assessors to assign the 
top-10 suggestions returned by SS, CG, and QFG to their related subtopic, for each given 
TREC query. Editors were also able to explicitly highlight that no subtopic can be associated 
with a particular recommendation. The evaluation process was blind, in the sense that all 
the suggestions produced by the three methods were presented to editors in a single, 
lexicographically ordered sequence where the algorithm which generated any specific 
suggestion was hidden. Given the limited number of queries and the precise definition of 
subtopics provided by NIST assessors, the task was not particularly cumbersome, and the 
evaluations generated by the assessors largely agree. 
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The histogram shown in Figure 3 plots the average coverage (Definition 4) of the associated 
subtopics measured on the basis of assessor’s evaluations for the top-10 suggestions.  

The comparison of the results returned by SS, CG, and QFG was performed by using all 50 
TREC topics. In this Figure it cand be easily observed that SS outperforms its competitors. On 
36 queries out of 50 SS was able to cover at least half of the subtopics, while CG only in two 
cases reached the 50% of coverage, and QFG on 8 queries out of 50. Moreover, SS covers 
the same number or more subtopics than its competitors in all the cases but 6. Only in 5 
cases QFG outperforms SS in subtopic coverage (query topics 12, 15, 19, 25, 45), while in 
one case (query topic 22) CG outperforms SS. Furthermore, while SS is always able to cover 
one or some subtopics for all the cases, in 15 (27) cases for QFG (CG) the two methods are 
not able to cover any of the subtopics. The average fraction of subtopics covered by the 
three methods is: 0.49, 0.24, and 0.12 for SS, QFG, and CG, respectively. 

 
Figure 3 Recommendation Coverage 

Figure 4 reports the effectiveness (Definition 5) of the top-10 suggestions generated by SS, 
QFG, and CG. Also considering this performance metric the Search Shortcuts solution results 
are the better ones. SS outperforms its competitors in 31 cases out of 50. The average 
effectiveness is 0.83, 0.43, and 0.42 for SS, QFG, and CG, respectively. The large difference 
measured is mainly due to the fact that both CG and QFG are not able to generate good 
suggestions for queries that are not popular in the training log. 

 
Figure 4 Recommendation Effectiveness 

Regarding this aspect, the histogram in Figure 5 shows the average effectiveness of the top-
10 suggestions returned by SS, CG and QFG measured for groups of TREC queries arranged 
by their frequency in the training log. SS remarkably outperforms its competitors. In fact, it 
is able to produce high-quality recommendations for all analyzed query categories, while CG 
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and QFG can not produce recommendations for unseen queries. Furthermore, while SS 
produces constant quality recommendations with respect to the frequency of the TREC 
queries, CG and QFG show an increasing trend in the quality of recommendations as the 
frequency of the TREC queries increases. 

 
Figure 5 Average Recommendation Effectiveness on varying query frequencies 

For this reason, we can assert that the SS method is very robust to data sparseness which 
strongly penalizes the other two algorithms, and is able to effectively produce significant 
suggestions also for singleton queries which were not previously submitted to the WSE. We 
recall that singleton queries account for almost half of the whole volume of unique queries 
submitted to a WSE. These are often the hardest to answer since they ask for “rare” or 
poorly expressed information needs. The possibility of suggesting relevant alternatives to 
these queries is more valuable than the one of suggesting relevant alternatives to frequent 
queries which express common and often easier to satisfy needs. 

Table 1 Suggestion example 

Suggestions provided Subtopics for query: 

"diversity" 
SearchShortcuts Cover 

Graph 

Query Flow Graph 

1. How is workplace 
diversity achieved and 
managed?  

2. Find free activities and 
materials for running a 
diversity training 
program in my office. 

3. What is cultural 
diversity? What is 
prejudice?  

4. Find quotes, poems, 
and/or artwork 
illustrating and 

• diversity in 
education  

• diversity inclusion  

• cultural diversity  

• diversity test  

• accepting diversity  

• diversity poem 

• diversity skills  

• diverse learners 
presentation  

• picture of diverse 
children  

• advantages of 

no 

suggestions 

• accepting diversity  

• dispariging 
remarks  

• diverse world  

• diversity director  

• diversity poem  

• diversity test  

• minority & women  

• civil liberties  

• inclusion 

• gender and racial 
bias 
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promoting diversity. diversity 

 

Finally, we report in Table 1 an example of the suggestion produced by the three algorithms 
for the query "diversity" which occurs only 27 times in training log, and the subtopics taken 
into consideration by the TREC diversity task. 

1.2 Search shortcuts specification for ASSETS 

Our proposal is to integrate into ASSETS the Search Shortcuts algorithm, which was proven 
to be very effective in the Web search scenario. The recommendation algorithm has a very 
simple interface, but it requires model training to be performed off-line. The model training 
should be repeated when a significant topic shift occurs in the query log, and therefore the 
algorithm is not well tuned to answer such new queries. Usually, the training is run during 
weekends when the search infrastructure has low query load. The software to be developed 
for the query log analysis and indexing is described in Section 3. Below we provide the 
specification of the core query recommendation service, which is also included in 
Deliverable D2.0.4. 

Service Name Query Suggestion service 

Responsibility Query Suggestion 

Provided Interfaces Suggest 

Dependencies ASSETS Common, ASSETS Core, Query Logs, BM25F 

Interface Name Suggest 

Key concepts Queries, Shortcuts, Ranking 

Operation getSuggestions 

 

The interface Suggest hides the implementation details of the recommendation service. It 
provides a simple method named getSuggestions, which provides a set of recommended 
queries that the Graphical User Interface should present to the user. Below we show the 
corresponding class diagrams that provide a more detailed specification of this service. 

 

 

Figure 6 SuggestionsImpl class diagram 
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In Figure 6 we show the class diagram of the domain object Suggestions which is used to 
store the set of queries suggested to the user. The object is used to encapsulate for a 
particular query (e.g., Pablo Picasso), the suggestions for the query ranked for relevance 
(e.g., Pablo Picasso life, Guernica, Cubism …).  

 

 

Figure 7 QuerySuggestionServiceImpl class diagram 

In Figure 7 we show the class diagram of the query suggestion service implementation, 
which exploits an index of virtual documents to provide recommendations in response to a 
given query. For each received query, the Query Suggestion Service produces a Suggestions 
Object containing the ranked list of suggestions.    

 

Figure 8 QuerySuggestion client class diagram 

Finally, in Figure 8, we illustrate the class diagram of the query suggestion client and its 
implementation. The client defines how the other components of the ASSETS platform will 
interact with the query recommendation component. Its task is to receive from the other 
components the queries, then submits the queries to the query suggestion service and 
returns the suggestions to the applicants. If needed, this service could be exposed externally 
as a specific API-call available to third-parties. 
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2. T2.2.2: Metadata-based Ranking 

Task T2.2.2 deals with effective techniques for ranking metadata objects in the Europeana 
context. The Europeana query log analysis that we conducted thanks to the tools developed 
within task T2.2.3, and the literature on multi-field document retrieval, suggests that the 
ranking function currently adopted by Europeana can be improved. The results of such 
query log analysis are illustrated in Section 3. In the following, we first review the state of 
the art in multi-field document retrieval, and we provide a specification of an advanced 
metadata based ranking to be included into the ASSETS engine. In particular, we propose to 
adopt the BM25F ranking function, and to exploit machine learning algorithms to best tune 
its parameters. The learning step exploits the output of query log processing tools, which is 
described in Section 3. 

2.1 Description of BM25F 

Ranking functions are one of the most important components of a document retrieval 
system. A ranking function answers to the question "what is the relevance of a document d 
for the user query q?". Therefore, the goodness of the ranking function adopted determines 
the quality of the results returned. 

The probably most widely used ranking function is BM25 (RW94), and it is still considered 
the most relevant baseline. Grounded in the probabilistic language modelling theory, BM25 
was designed as a non-linear combination of three important document attributes: term 
frequency, document frequency, and document length. Even if originally, Web documents 
where considered as composed of few fields, such as body, title, URL, BM25 uses a flat 
representation of a document, where its fields are simply concatenated into a single textual 
description. But we know that Europeana documents have a very rich structure and they are 
described by means of many fields, each possibly playing a different role in the document 
retrieval task. 

BM25F (RZT04) is an extension of BM25 that exploits a document description having 
multiple fields, and it is still a non-linear function, thus capable of modelling non-trivial 
factors that determine the relevance of a document for a given query. Given a document d, 
having fields F, and a query q, BM25F produces a score of the document computed as 
follows: 

 

where TF(t,d) measures the importance of term t for document d, and IDF(t) is the usual 
inverse document frequency measuring the importance of term t in the whole collection of 
document. Let df(t) be the document frequency of term t, i.e. the number of documents in 
the collection containing the term t, the IDF function is defined as follows: 

 

More precisely, BM25 and BM25F adopt a term frequency saturation function which 
accounts for the fact that finding twice the term t in d, is not twice as surprising (i.e. 
relevant) as finding the same term once. We can update the BM25F formula as follows: 
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The parameter k realizes the saturation: the larger k, the more important is the variation of 
term frequency. As we mentioned above, BM25F takes into account the multiple fields of 
the document, and this is done when computing the term frequency component TF(t,d). 
Indeed, the term frequency is computed independently for each field, and a linear 
combination is computed as follows: 

 

where wf is a weight (or boosting factor) for the field f, and TF(t,d,f) is the frequency-based 
contribution of term t in the field f of document d. Finally, the frequency TF(t,d,f) is 
normalized on the basis of the length of the document field f: 

 

where occurs(t,d,f) is the actual number of occurrences of term t in the field f of document 
d, ld,f is the length of the field f of document d, lf is the average length of field f across the 
whole collection, and bf is a model parameter tuning the impact of document length  
normalization.  

BM25F can be considered the state of the art of ranking functions in multi-field document 
retrieval. However, its accuracy depends on the ability to fine-tune its parameters k, wf, bf. 
Note that for |F| fields there are 2|F|+1 parameters to be tuned.  

Before describing how to fine-tune these parameters automatically, we add some 
comments on the Lucene ranking function. Lucene is a popular open source search engine, 
being at the core of SOLR, which is the search infrastructure adopted by Europeana and 
ASSETS. Lucene is able to rank multi-field documents by exploiting the following scoring 
function: 

Notice that the frequency of each term is saturated with the square root function, and that 
the score is a linear combination of a per-field contribution. The effect is that a document 
matching a single query term over several fields could have a larger score than a document 
matching several query terms in one field only, and this may significantly decrease the 
retrieval precision compared to BM25F, as showed in (PA+10). 

2.2 Learning To Rank 

In the previous section, we have described BM25F that can be considered as a non-trivial 
combination of many relevance measures to a given query, one for each field of the 
document. We have also mentioned that BM25F has a number of parameters that need to 
be fine tuned in order to achieve an optimal ranking function. This parameter search task 
consists in optimizing some cost function that measures the goodness of the rankings. 
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This learning problem is strictly related to another problem arising in modern information 
retrieval systems. Traditionally, only a small number of features have been used to devise 
ranking functions. BM25F is among these traditional methods, since it includes simply term 
frequency, inversed document frequency, and document length. More recently, a number 
of additional features have proved their utility. They include structural features such as title, 
anchor text, URL of a Web page, and also query-independent features such as PageRank, 
URL length, and many others. The large number of features makes it impossible to 
empirically fine-tune a ranking function accounting for all of them. This trend calls for new 
supervised methods for building effective ranking functions, which we call Learning to Rank 
algorithms. 

Existing methods fall into two categories, "point-wise training" and "pair-wise training". In 
the former, single documents are labelled in relation to a given query, e.g. relevant or 
irrelevant. In the latter, the labelling consists pair-wise preferences, e.g. document a is more 
relevant than document b. Both allow to exploit click-through data, which are a gold-mine of 
implicit user relevance feedback. 

Click-through data can be thought as triples (q, r, c) where q is a query, r is the ranked list of 
documents appearing in the result page presented to the user, and c is a subset of r 
containing the list of documents the user clicked on (sorted by timestamp). Pair-wise 
preferences can be simply computed by exploiting such data.  Given a ranked list of results r 
= r1, r2, … , r10 , and the user clicks on some of them, let for example c = r2, r6 and r7,  we can 
state that:  

1. Clicked documents r2, r6, and r7 are relevant for query q; 

2. The document with rank r2 is more relevant than document with rank r1, and 
document with rank r6 more than document with rank r5; 

3. The document with rank r6 is more relevant than documents with ranks r1, … , r5 

Hence a relevance relation R on pairs of documents can be devised: for a query q and a 
collection of ranked documents D = {r1, r2, … , rm} if a document ri is more important than a 
document rj the couple (ri, rj ) is in R. In the previous example, we would have R = ((r2, r1), (r6, 

r5), (r6, r4), (r6, r3), (r6, r2), (r6, r1)). 

In the following we review some important learning to rank approaches that can exploit 
such pair-wise preferences to optimize the ranking function parameters. 

2.2.1 Ranking SVM 

In (HGO00), a method called Ranking SVM is proposed. The idea is to transform pair-wise 
preferences into a classification problem solved with a support vector machine.  

First assume that the relatedness of a query q to a document d can be expressed as a 

function of a vector of N features x, thanks to a mapping function Φ(q,d)=x. The vector x 
may be very complex, containing hundreds of features, e.g. BM25 computed on every single 

document field. The training set consists in a collection of pair relations in the form xiffffxj 
meaning that xi is more important than xj. A ranking function f should be such that: xiffffxj 

⇔f(xi)>f(xj). Second, we assume that f is a linear function of x defined as follows: 

 

where w is a set of weights, and 〈⋅,⋅〉 stands for the inner product. We can thus obtain: 
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In principle, e.g. due to noise in the training set, there might not exist a function f, or 
equivalently a weight vector w, such that the above inequality is satisfied for every instance 
of the training set. The goal is to find w such that maximizes the number of training 
instances for which the corresponding inequality is fulfilled. This is done by introducing non 

negative slack variables ξi,j and reformulating the learning to rank problem into an 
optimization problem: 

 

subject to:    and  .  

This formulation is equivalent to an SVM classification problem formulation, where the goal 
is to build a classifier recognizing correctly ordered versus incorrectly ordered document 

pairs. The SVM classifiers can thus be turned in a ranking function. Let ω be the solution of 
the SVM classification problem, the score of a document d relative to a query q is computed 
as follows: 

 

In HGO00 it is also shown that this SVM formulation allows to adopt any other non-linear 
kernels, and not necessarily the linear inner product. Although, a non linear kernel may 
produce a less efficient ranking function. 

2.2.2 RankNet 

In BS+05, a similar approach based on neural networks is presented. As with Ranking SVM, 
the training is done with preference pairs. Given xiffffxj, we denote with si and sj their score 
f(xi) and f(xj). Then, the probability that xi should be ranked higher than xj in the result list, is 
computed with a sigmoid function: 

 

The sigmoid function is widely used in neural networks and it is known to produce good 
probability estimates. The predicted probability is compared against the target probability 
∏ij which is learnt from the training. A cross entropy cost function C is introduced: 

Since we assume that our training pairs are in the form xiffffxj then ∏ij is always equal to 1, i.e. 
document xi has (observed) 100% probability of being more important than document xj. 
Thus the model simplifies to: 

In the above, we did not specify the ranking function f, but we can assume it is a function of 
some model parameters w, similarly to what we did with Ranking SVM, without fixing any 
specific ranking function. Our goal is to find the model parameter that minimizes the cost 
function C. The cost can be optimized via gradient descent by taking the derivative of C with 
respect to each parameter of the model wk: 
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Therefore, to update the model parameters it is needed to be able differentiate the cost 
function with respect to the scores, and more importantly, to differentiate the ranking 
function f with respect to each model parameter. Not only it is possible to plug the above 
derivative in a neural network, but also to exploit a gradient descend considering BM25F as 
a scoring function [TZ+06]. 

2.2.3 LambdaRank 

RankNet optimizes a specific cost function to improve the scoring function of the retrieval 
system. The assumption is that the optimization measure matches the target measure, but 
unfortunately typical IR costs are non differentiable everywhere and require sorting by 
model score, which is itself a non-differentiable operation. In other words, we would prefer 
to specify how the rank order of documents needs to be changed, rather than tuning a 
ranking function leading to the desired ranking order. LambdaRank [BRL06] exploits the fact 
that a neural network only needs to know the gradients of the optimized function w.r.t. the 
model parameters, i.e. the IR measure w.r.t. the document scores, and does not need to 
know the cost function itself. The gradients can be defined by specifying rules describing 
how swapping the position of two documents, after sorting them by their score relative to a 
given query, affects the IR quality measure. In conclusion, we do not need to find a derivable 
function approximating a target IR evaluation measure, but it is sufficient to define the how 
a change of position in a ranked list effects the evaluation measure. 

Let's first introduce the one of the most commonly used IR quality measure. The Normalized 

Discounted Cumulative Gain (NDCG) of a result list for a query q is: 

 

where rj is a relevance level of the j-th result, L is a truncation level determining the number 
of results evaluated, and Ni is a normalization constant such that a perfect ordering would 
achieve NCDG=1. 

The LambdaRank gradient  λj, is defined to be a smooth approximation to the gradient of 
the evaluation measure w.r.t. the score of the document ranked at position j, that is an 
approximation of how the ranking quality would change by moving the document from 
position j.  

We report the LamdaRank gradient discussed in [BRL06], but it has been shown that 
LamdaRank gradients can be devised for many other IR evaluation function [DSB09]. The 
proposed gradient is a combination of the derivative of the RankNet cost scaled by the 
NDCG gain resulting from swapping two documents. In detail, assume that document i and j 
have scores si and sj, relevance level ri and rj, and let oij be the cost difference si-sj. Note that 
differently from RankNet we do not assume that documents pair are always such that xiffffxj. 
Then, the RankNet cost is equivalent to: 

 

where Sij equals 1 if li>lj, and -1 vice versa. Its derivative according to the score difference is: 
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The LamdaRank gradient is then defined as: 

 

where N is the reciprocal of the maximum DCG for the given query, and ri and rj are the rank 

position of the document i and j. Note that the sign of λij depends only on Sij, i.e. on their 
relative importance. 

The LamdaRank gradient λi for a single document i is computed by marginalizing over all the 

available pair-wise gradients λij as follows: 

 

To sum up, we are training a neural network to score document with respect to a given 
query. The neural network optimizes a cost function which is a smooth approximation of the 
NDCG, and which can be extended to other IR evaluation functions. In particular, it is 
sufficient to specify how the cost changes when the order of the ranked document changes, 
by introduced the so called LambdaRank gradients. These gradients are finally plugged into 
a neural network learning process. 

 The authors of [SB09] show that it is possible to achieve interesting result by training such a 
neural network on the signals given by the BM25 from each single field. One disadvantage 
of the approach, is that the generated ranking function is a neural network from which it is 
not easy to understand the importance of each attribute. Also, implementing a neural 
network as a ranking function may not be an efficient solution. 

2.2.4 LineSearch or direct optimization of BM25F 

The above learning to rank approaches exploit BM25 by using the BM25 rank on each 
document field as a feature of the document/query pair. Indeed, they are able to find 
possibly non-linear function that may resemble BM25F, but they cannot be considered as a 
tuning process of the BM25F parameters. An interesting approach for Europeana would be 
to find the best parameter set for BM25F, and this can be done with a greedy exploration of 
the parameter space. An interesting approach based on the line search algorithm is 
presented in [TZ+06]. 

The advantage of the line search algorithm is that it can be adapted so as to exclude any 
dependency on the gradients of the cost function to be optimized, and rather to consider 
actual IR evaluation functions such as NDCG. 

The algorithm works as follows. Given an initial point in the parameter space, a search along 
each co-ordinate axis is performed by varying one parameter only and keeping fixed the 
others. For each sample point, the NDCG is computed, and the location corresponding to 
the best NDCG is recorded. Such location identifies a promising search direction. Therefore, 
a line search is performed along the direction from the starting point to the best NDCG 
location. If the parameter space has dimension k, we need to perform k+1 line searches to 
complete an iteration, or epoch, and possibly move to an improved solution. The new 
solution is then used as the starting point of the next iteration, and the sampling scale is 
reduced. This iterative process continues until no improvement is found, or a maximum 
number of epochs is reached. 

The authors of [TZ+06] show that it is thus possible to tune the parameters of BM25F in 
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order to obtain better ranking results. 

2.3 Metadata based ranking for ASSETS 

We propose to replace the Lucene ranking function with BM25F. The latter has proven to be 
for effective, and has efficiency guarantees compared to neural network based approaches. 
The new ranking service should exploit a learning process where its parameters are fine-
tuned on the basis of click through information contained in the query logs. The learning 
process can be costly, depending on the size of the query log and on the size of the 
collection. But this training is performed off-line, and its cost is justified by the improvement 
in the efficacy of the search system. We plan to devise a ranking function that best suits 
Europeana actual users, starting from an evaluation of some of the above described 
techniques. 

 

Service Name BM25F Scoring function 

Responsibility (i) Search & Retrieval, (ii) Learn from query logs BM25F's parameters 

Provided Interfaces BM25F 

Dependencies ASSETS Common, ASSETS Core, Query Logs 

Interface Name BM25F 

Key concepts Queries, Learning to rank, Ranking, Query Logs 

Operation search , learning to rank 

 

The service this provides to main operation: search and learning to rank. 

 

Figure 9 Ranking parameters class diagram 

Figure 9 shows the domain objects for the service: 

• QueryParams models the user query: it contains the text of the query and the filters 
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possibly added by the user to refine the query (for example TYPE:IMAGE filters only 
documents containing images).  

• RankingParameters models the set of free parameters for the ranking function.  The 
method getParameters() returns a dictionary where, for each parameter, there is 
the value optimizing  the quality of the ranking function, learned from the query 
logs. 

 

 

 

Figure 10 BM25F Scoring function class diagram 

Figure 10 shows the class diagram of the BM25F scoring function implementation. The 
service allows to process a query using the BM25F scoring function (method search) and 
returns a list of AssetsFullDoc. Furthermore, the service exposes a method to retrieve a good 
tuning for the parameters in the scoring function (that the developer has to set in the SOLR 
configuration file). 
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Figure 11 BM25F Scoring function client class diagram 

In Figure 11, we show the class diagram of the BM25F client and its implementation. The 
client defines how the other components of the ASSETS platform will interact with the 
BM25F component. Its task is to receive from the other components the queries 
(encapsulated in a QueryParams object, that may contain also filters and other parameters), 
then submits the queries to the SOLR engine and returns the results to the applicants 
(function search()). Furthermore, the client also exposes a method to require the BM25F’s 
parameters learning process (method learnParameters()). If a user invokes this method,  
(s)he obtains a list of parameters with their respective tuned values (encapsulated in a 
RankingParameters object). 

2.3.1 BM25F Solr Plugin 

For performance reasons, we decided to implement the BM25F ranking function inside Solr. 

The ranking function needs to access several values that can be found only in the document 
index, that are:  

• The field term frequency, i.e., how many times a term occurs in a field of a 
document (e.g., “description”); 

• The inverse document frequency, i.e., how many documents contain a specified 
term; 

• The average length of a field, i.e., the average length (in terms) of a field computed 
on the whole collection. 

We integrated the ranking function as a Solr plugin, without touching the code core. This 
will allow to update Solr  to new versions without applying any patch. The admin can import 
the plugin from the Solr’s configuration file (solrconfig.xml) by simply adding this few lines 
to the file: 
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<queryParser name="bm25f" 
class="bm25f.parser.BM25FQParserPlugin"> 
<float name="k1">1.0</float> 
<str name="mainField">text</str> 
<lst name="averageLengthFields"> 
<float name="text">500</float> 
<float name="title">20</float> 
<float name="description">300</float> 
<float name="YEAR">4</float> 
<float name="date">10</float> 
</lst> 
<lst name="fieldsBoost"> 
<float name="text">1.0</float> 
<float name="title">5.0</float> 
<float name="description">3.0</float> 
<float name="YEAR">1.0</float> 
<float name="date">1.0</float> 
</lst> 
<lst name="fieldsB"> 
<float name="text">0.75</float> 
<float name="title">0.75</float> 
<float name="description">0.75</float> 
<float name="YEAR">0.75</float> 
<float name="date">0.75</float> 
</lst> 

</queryParser> 

 

The configuration file allows the admin to change the parameters of the ranking function by 
using his domain knowledge or by calling the learnParameters() method. The customizable 
parameters are:  

• K1, the saturation factor (default 1.0) 

• fieldBoost,  containing the boosts to apply on the various fields; 

• fieldB, containing the boosts to apply to the length of a field; 

• averageLengths, the average lengths of the fields, because solr does not have this 
data. The method learnParameters will also return an estimation of these lengths. 

Once the plugin has been plugged in, the BM25F ranking function can be called by simply 
adding to the get request the parameter defType=bm25f, e.g. : 

 

http://mysolrmachine:8983/solr/select/?defType=bm25f&q=leonardo%20da%20vinci 
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3. T2.2.3: Text Indexing and Retrieval 

3.1 Query Log Analysis 

A query log keeps track of historical information regarding past interactions between users 

and the retrieval system. It usually contains tuples 〈qi,ui,ti,Vi,Ci〉 where for each submitted 
query qi, the following information is available: i) the anonymized identifier of the user ui, ii) 
the submission timestamp ti, iii) the set Vi of documents returned by the search engine, and 
iv) the set Ci of documents clicked by ui. Therefore, a query log records both the activities 
conducted by users, e.g. the submitted queries, and an implicit feedback on the quality of 
the retrieval system, e.g. the clicks. 

Here, we consider a query log coming from Europeana portal, relative to the time interval 
ranging from August 27, 2010 to February, 24, 2011. This is a six months worth of users' 
interactions, resulting in 1,382,069 distinct queries issued by users from 180 countries 
(3,024,162 is the total number of queries). We pre-processed the entire query log in order 
to remove noise (e.g., stream of queries submitted by software robots instead of humans). 

It is worth noticing that 1,059,470 queries (i.e., 35% out of the total) also contain a filter 
(e.g., YEAR:1840). These filters are used to implement faceted search. Users can filter results 
by type, year or provider simply by clicking on a button, so it is reasonable that they try to 
refine retrieved results by applying a filter, whenever they are not satisfied. Furthermore, 
we find that users prefer filtering results by type, i.e., images, texts, videos or sounds. 
Indeed, we measured that 20% of the submitted queries contains a filter by type. This is a 
proof of the skilfulness of Europeana users and their willingness to exploit non trivial search 
tools to find the desired contents. This also means that advanced search aids, such as query 
recommendation, would be surely exploited. 

Similarly to Web query log analysis [SM+99], we discuss two aspects of the analysis task: i) 
an analysis on the query set (e.g., average query length, query distribution, etc.) and ii) a 
higher level analysis of search sessions, i.e., sequences of queries issued by users for 
satisfying specific information needs. 

 

Figure 12 Query Frequency Distribution 

 

Figure 13 Country query distribution 
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3.1.1 Query Analysis 

First we analyzed the load distribution on the Europeana portal. An interesting analysis can 
be done on the queries themselves. Figure 12 shows the frequency distribution of queries. 

As expected, the popularity of the queries follows a power-law distribution (p(x)∝k·x
-α), 

where x is the popularity rank. The best fitting α parameter is α= 0.86, which gives a hint 

about the skew in the frequency distribution. The larger α the larger is the portion of the log 

covered by the top frequent queries. Both [M00] and [BG+07] report a much larger α value 
of 2.4 and 1.84 respectively from a Excite and a Yahoo! query log. 

Such small value of α means that the most popular queries submitted to Europeana do not 
account for a significantly large portion of the query log. Indeed, since Europeana is strongly 
focussed on the specific context of cultural heritage, its users are likely to be more skilled 
and therefore they tend to use a more diverse vocabulary. 

In addition, we found that the average length of queries is 1.86 terms, which is again a 
smaller value than the typical value observed in Web search engine logs. We can argue that 
the Europeana user has a more rich vocabulary, with discriminative queries made of specific 
terms. 

Figure 13 shows the distribution of the queries grouped by country. France, Germany, and 
Italy are the three major countries accounting for about the 50% of the total traffic of 
queries submitted to the Europeana portal.  

Figure 14 reports the number of queries submitted per day. We observe a periodic 
behaviour over a week basis, with a number of peaks probably related to some Europeana 
dissemination or advertisement activities. For example, we observe several peaks between 
the 18th and the 22nd November, probably due to the fact that, in those days, Europeana 
announced to have reached a threshold of 14 million of indexed documents. 

Figure 15 shows the load on the Europeana portal on a per hour basis. We observe a 
particular trend. The peak of load on the Europeana portal is in the afternoon, between 15 
and 17. It is different from commercial Web search engines where the peak is reached in the 
evening, between the 19 and the 23 [BJ+04]. A possible explanation of this phenomenon 

 

Figure 14 Daily Query Frequency Distribution 

 

Figure 15 Hourly Query Frequency Distribution 
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could be that the Europeana portal is mainly used by people working in the field and thus, 
mainly accessed during working hours. From the other side, a commercial Web search 
engine is used by a wider range of users looking for the most disparate information needs 
and using it through all the day.   

3.1.2 Session Analysis 

To fully understand user behaviour, it is important to analyze also the sequence of queries 
she submits. Indeed, every query can be considered as an improvement of the previously 
done by the user to better specify her information need. 

Several techniques have been developed to split the queries submitted by a single user into 
a set of sessions [BB+08,JK08,LO+11]. We adopted a very simple approach which has proved 
to be fairly effective [SM+99]. We exploit a 5 minutes inactivity time threshold in order to 
split the stream of queries coming from each user. We assume that if two consecutive 
queries coming from the same user are submitted within five minutes they belong to the 
same logical session, whereas if the time distance between the queries is larger, the two 
queries belong to two different interactions with the retrieval system.  

By exploiting the above time threshold, we are able to devise 404,237 sessions in the 
Europeana query log. On average a session lasts about 276 sec, i.e., less than 5 minutes, 
meaning that, under our assumption, Europeana's users complete a search activity for 
satisfying an information need within 5 minutes. The average session length, i.e., the 
average number of queries within a session, is 7.48 queries. This number of queries is a 
interesting evidence that the user is engaged by the Europeana portal, and she is willing to 
submit many queries to find the desired result. 

Moreover, we distinguish between successful and unsuccessful sessions. According to 
[BC+09], a session is supposed to be successful if its last query has got a click associated. To 
this end, we find 182,280 occurrences of successful sessions in the Europeana query log, 
that is about 45% of the total. We notice that in [BG+07] it was observed a much larger 
fraction of successful sessions, about 65%. 

 

Figure 16 Successful vs. Unsuccessful sessions' length distribution 

Figure 16 shows the distributions of session lengths, both for successful and unsuccessful 
sessions. On the x-axis the number of queries within a session is plotted, while on the y-axis 
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the frequencies, i.e., how many sessions to contain a specific number of queries are 
reported. We expect successful sessions contain on average less queries than unsuccessful 
ones, due to the ability of the retrieval system to return early high quality results in 
successful session. The fact that the session length distributions are very similar, suggests 
that high quality results are not in the top pages, and that the Europeana ranking can be 
improved in order to present interesting results to the user earlier, thus reducing the 
successful session length with a general improvement of the user experience. 

Table 2 Comparison of Europeana and Web users 

Finally, in Table 2 we summarize some statistics extracted both from the analysis of the 
Europeana query log as well as from general purpose Web Search Engines historical search 
data. 

3.2 Indexing and retrieval of query log information for ASSETS 

The goal of task T2.2.3 is to devise a set of query log processing tools needed by other 
services, in particular for extracting user behavioural patterns needed for improving the 
ASSETS ranking function and for providing the model used by the query recommendation 
service. 

Service Name Query Log Indexing 

Responsibility Cleaning and indexing of query log information for learning. 

Provided Interfaces BuildIndex, GetUserSession, GetQueryPopularity 

Dependencies ASSETS Common, ASSETS Core, Query Logs 

Interface Name QueryLogIndexing 

Key concepts Session Detection, Data cleaning 

Operation Analysis and indexing of query log index 

 

This includes non-trivial activities such as query log cleaning, analysis and indexing 
accessible by any ASSETS component via the QueryLogIndexing service interface. 

In Figure 17 we show the class diagram modelling query log data and session information. 
QueryLogRecord describes the object modelling a record in the query log. It 
representsRepresents a user interaction with the portal (submitting a query, clicking on a 
results, etc.). Session models a user query session. Queries by the same user are split in 
different sessions on the basis of the time interval between consecutive queries. 

 Europeana Web Search Engines 

avg. query terms 1.86 
2.35 [M00] 

2.55 [SM+99] 

query distribution (i.e., power-law's α) 0.86 
2.40 [M00] 

1.84 [BG+07] 

avg. queries per session 7.48  2.02 [SM+99] 

% of successful sessions 45 65 [BM+10]  
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Figure 17 QueryLogRecImpl class diagram 
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Figure 18 QueryLogIndexing class diagram 

 

Finally, in Figure 18 we report the class diagram of the query log indexing service. The 
service accomplishes the task of retrieving the query log, splitting the log into user sessions, 
computing relevant statistics and other info to be used by the query suggestion service and 
by the metadata based ranking. More in detail: 

• initIndex and insertQueryLog allow to create a newIndex, and to add new query log. 

• getUserSessions, getNumberOfDistintUsers, getNumberOfSessions, 

getNumberOfQueries, getNumberOfDistintQueries, getAverageQueryLength, 

getTopQueriesWithFrequencies, getNumberOfSessionsForDay, 

getNumberOfSessionsForHour, getSession , getUserSessionIds allow to retrieve 
statistics on the indexed query logs (also filtering on the date) 

Notice that the service executes implicitly the removal of noise from the query log, e.g. bots 
interactions. 
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Figure 19 QueryLogIndexing client class diagram 

   

In Figure 19, we illustrate the class diagram of the Query Log Indexing client and its 
implementation. The client defines how the other components of the ASSETS platform will 
interact with the Query Log Indexing component. This component allows the users to obtain 
useful statistics on the user searches. More in detail, a user can retrieve: 

• the session ids by a particular user (getUserSessions); 

• the distinct number of users (getNumberOfDistintUsers); 

• the distinct number of sessions (getNumberOfSessions); 

• the number of queries (getNumberOfQueries); 

• the number of distinct queries (getNumberOfDistintQueries); 

• the average length of a query in number of terms (getAverageQueryLength); 

• the number of sessions per day (getNumberOfSessionsForDay); 

• the number of sessions per hour (getNumberOfSessionsForHour) ; 

• the most frequent queries (getTopQueriesWIthFrequencies); 

• the sessions associated with a specific IP address (GetUserSessionsIds); 

• a particular session object (getSession). 

The user can also refine his search by specifying in the method a starting and an ending 
date. In this way, the statistics will concern only the queries submitted in the specified time 
period. Finally, the user can build a new query log index (initIndex), or index a new file 
containing query log records from Europeana (insertQueryLog). 
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4. Conclusions 

This deliverable details the ASSETS services that are developed by the CNR team within tasks 
"T2.2.1 Post Querying Processing", "T2.2.2 Metadata based ranking" and "T2.2.3 Text 
Indexing and Retrieval". For each activity, the deliverable contains a related work section 
surveying the state of the art on the particular topic; a detailed description of the solution 
devised for implementing the service under the ASSETS project umbrella; and the 
specification of the APIs designed for service invocation. The development of the prototypes 
for these services is undergoing. At the time of writing this document we are about to have 
a first implementation of all the services described above. The first prototypes do not 
support the full service functionality, but a connected subset of them is already developed 
in order to showcase the overall post query processing process. Moreover, the current 
implementations are already integrated in the ASSETS platform.  
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