

D2.2.1 SPECIFICATION OF POST

QUERYING PROCESSING

FUNCTIONALITIES

Advanced Search Services and Enhanced

Technological Solutions for the European Digital

Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable ASSETS.D2.2.1.CNR.WP2.2.V1.0

Report
V1.0 – 11 May 2011

Document. ref.: ASSETS.D2.2.1.CNR.WP2.2.V1.0

ASSETS Specification of post querying processing functionalities D2.2.1.V1.0

Programme Name: ICT PSP
Project Number: 250527
Project Title: ASSETS
Partners: .. Coordinator: ENG (IT)

Contractors:
Document Number: ASSETS.D2.2.1.CNR.WP2.2.V0.2
Work-Package:............................... 2.2
Deliverable Type: Report
Contractual Date of Delivery: 31 March 2011
Actual Date of Delivery: 11 May 2011
Title of Document: Specification of post querying processing

functionalities
Author(s): Diego Ceccarelli (CNR), Claudio Lucchese (CNR),

Raffaele Perego (CNR), Òscar Paytuv (BMAT),
Serkan Demirel (Europeana), Sergiu Gordea
(AIT)

Approval of this report APPROVED

Summary of this report: see Executive Summary

History: .. see Change History

Keyword List: Post Query Processing

Availability This report is:

X public
limited to ASSETS consortium distribution
limited to EU Programme distribution
restricted

Change HistoryChange HistoryChange HistoryChange History
Version Date Status Author (Partner) Description

0.1 01.03.2011 Draft Claudio Lucchese (CNR) Initial draft

0.2 31.03.2011 Peer-review Diego Ceccarelli (CNR)

0.3 26.04.2011 Pre-final Claudio Lucchese (CNR) Addressing reviewers
comments

0.4 11.05.2011 Final Claudio Lucchese (CNR) Addressing reviewers
comments

1.0 11.05.2011 Final Claudio Lucchese (CNR) Approved and Released

ASSETS Specification of post querying processing functionalities D2.2.1.V1.0

Table of Contents

EXECUTIVE SUMMARY 1

1. T2.2.1: POST QUERYING PROCESSING 2

1.1 SEARCH SHORTCUTS: AN EFFECTIVE QUERY SUGGESTION ALGORITHM 2

1.1.1 Related work 2

1.1.2 Search Shortcuts Problem definition 3

1.1.3 Generating query suggestions with Search Shortcuts 4

1.1.4 Quality Assessment 6

1.2 SEARCH SHORTCUTS SPECIFICATION FOR ASSETS 11

2. T2.2.2: METADATA-BASED RANKING 13

2.1 DESCRIPTION OF BM25F 13

2.2 LEARNING TO RANK 14

2.2.1 Ranking SVM 15

2.2.2 RankNet 16

2.2.3 LambdaRank 17

2.2.4 LineSearch or direct optimization of BM25F 18

2.3 METADATA BASED RANKING FOR ASSETS 19

2.3.1 BM25F Solr Plugin 21

3. T2.2.3: TEXT INDEXING AND RETRIEVAL 23

3.1 QUERY LOG ANALYSIS 23

3.1.1 Query Analysis 24

3.1.2 Session Analysis 25

3.2 INDEXING AND RETRIEVAL OF QUERY LOG INFORMATION FOR ASSETS 26

4. CONCLUSIONS 30

5. REFERENCES 31

ASSETS Specification of post querying processing functionalities Page 1 D2.2.1.V1.0

Executive Summary

This document contains the specification of the services that are going to be developed
within tasks "T2.2.1 Post Querying Processing", "T2.2.2 Metadata based ranking" and
"T2.2.3 Text Indexing and Retrieval". All these tasks fall under the responsibility of CNR, but
their detailed definition is the result of an agreement reached with the other partners of the
ASSETS project having a technical role. For each activity, a scientific analysis and a detailed
technical specification at the API level is provided.

Regarding task "T2.2.1 Post Querying Processing", in Section 1 we report on the state of the
art in query recommendation systems, and we discuss an effective query suggestion
algorithm we are going to integrate into the ASSETS platform. Such recommendation
algorithm has proven to be effective on standard Web query logs and evaluation datasets,
and we expect that a similar performance can be achieved in the Europeana case.

Section 2 deals instead with effective techniques for ranking metadata objects in the
Europeana context as planned within task "T2.2.2 Metadata based ranking". We first review
the state of the art in multi-field document retrieval, and then we provide a specification of
an advanced metadata based ranking to be included into the ASSETS engine. In particular,
we propose to adopt the BM25F ranking function, and to exploit machine learning
algorithms to best tune its parameters.

Both the previous activities require models about user behaviours and preferences to be
exploited. Since the knowledge needed to build these models can be mined from the logs
storing past user activities, in Section 3 we discuss the deep analysis conducted on
Europeana query logs in order to devise opportunities for improving query suggestion and
the Europeana ranking function. The software support to query log cleaning and mining are
the subject of activities within task "T2.2.3 Text Indexing and Retrieval", that will provide an
ensemble of tools for storing, mining and searching Europeana usage information.

ASSETS Specification of post querying processing functionalities Page 2 D2.2.1.V1.0

1. T2.2.1: Post Querying Processing

Providing users of Web Search Engines (WSEs) systems with suggestions is a common
practice aimed at “driving” users toward the information bits they may need. Suggestions
are normally provided as queries that are, to some extent, related to those recently
submitted by the user. The generation process of such queries, basically, exploits the
expertise of “skilled” users to help inexperienced ones. The knowledge mined for making
this possible is contained in WSEs’ logs which store all the past interactions of users with the
system. The more the users that satisfied the same information need in the past, the more
precise and effective the related suggestions provided by the query recommendation
technique. On the other hand, to generate effective suggestions for queries that are rare or
have never been seen in the past is an open issue poorly addressed by state-of-the-art query
suggestion techniques.

In the past months we conducted a thorough preliminary study on its query log to
understand the common behaviours of Europeana users, and to evaluate opportunities for
integrating an effective query suggestion service into ASSETS. This analysis, which is
reported in Section 3.1, justifies the adoption of such a solution since it shows that many
users do not succeed in finding promptly the results they are looking for.

Below, we report on the state of the art in query recommendation systems, and we propose
to include into ASSETS an effective query suggestion algorithm that can improve the users'
interaction with the ASSETS (and Europeana) search portal. Such recommendation algorithm
was proven to be effective on standard Web query logs and evaluation datasets. Finally, we
provide a specification of the software to be integrated into the ASSETS platform.

1.1 Search Shortcuts: an effective query suggestion algorithm

1.1.1 Related work

The problem of query suggestion is related to two related research fields that have been
traditionally addressed from different points of view: query suggestion algorithms and
recommender systems. Recommender systems are used in several domains, being
especially successful in electronic commerce. They can be divided in two broad classes:
those based on content filtering, and those on collaborative filtering. As the name suggests,
content filtering approaches base their recommendations on the content of the items to be
suggested. On the other side, collaborative filtering solutions are based on the preferences
expressed by the users.

Due to their characteristic features, query suggestion calls for specifically tailored algorithm
being able to exploit all the additional information available in this scenario, such users
session, click, query results, etc. Techniques proposed during last years are very different,
yet they have in common the exploitation of usage information recorded in query logs [S10].
Many approaches extract the information used from the plain set of queries recorded in the
log, although there are several works that take into account the chains of subsequent
queries that belong to the same search session. The two most effective approaches are the
ones based on the concept of Cover Graph (CG) and Query Flow Graph(QFG), which we
described in the following.

ASSETS Specification of post querying processing functionalities Page 3 D2.2.1.V1.0

The authors of [BT07] exploit click-through data as a way to provide recommendations. The
method is based on the concept of Cover Graph. A CG is a bipartite graph of queries and
URLs, where a query q and an URL u are connected if a user issued q and clicked on u that
was an answer for the query. Suggestions for a query q are thus obtained by accessing the
corresponding node in the CG and by extracting the related queries sharing more URLs. The
sharing of clicked URLs results to be very effective for devising related queries.

[BB+08] introduced the concept of Query Flow Graph (QFG), an aggregated representation
of the information contained in a query log. A QFG is a directed graph in which nodes are
queries, and the edge connecting node q1 to q2 is weighted by the probability that users
issue query q2 after issuing q1. Authors highlight the utility of the model in two concrete
applications, namely, devising logical sessions and generating query recommendation. The
authors refine the previous studies in [BB+09a] and [BB+09b] where a query suggestion
scheme based on a random walk with restart model on the QFG is proposed.

We took into consideration both two algorithms based on CG and QFG to validate our
proposal for Europeana.

1.1.2 Search Shortcuts Problem definition

We formalize the problem of recommending good queries as a problem of generating
"search shortcuts", where we call shortcuts those queries that can help the user to access
earlier the content she is looking for.

The Search Shortcut Problem (SSP) is formally defined as a problem related to the
recommendation of queries in search engines and the potential reductions in the users
session length. This problem formulation allows a precise goal for query suggestion to be
devised: recommend queries that allowed “similar” users, i.e., users which in the past
followed a similar search process, to successfully find early the information they were
looking for. The problem has a nice parallel in computer systems: prefetching. Similarly to
prefetching, search shortcuts anticipate requests to the search engine with suggestion of
queries that a user would have likely issued at the end of her session.

Let U be the set of users of a Web Search Engine (WSE) whose activities are recorded in a
query log QL, and Q be the set of queries in QL. We suppose QL is pre-processed by using
some session splitting method (e.g. [JK08],[LO+11]) in order to extract query sessions, i.e.,
sequences of queries which are related to the same user search task. Formally, we denote
by S the set of all sessions in QL, and σu a session issued by user u. Moreover, let us denote
with σi

u the i-th query of σu. For a session σu of length n its final query is the query σn
u, i.e.

the last query issued by u in the session. To simplify the notation, in the following we will
drop the superscript u whenever the user u is clear from the context.

We say that a session σ is satisfactory if and only if the user has clicked on at least one link
shown in the result page returned by the WSE for the final query σn, unsatisfactory
otherwise. Clearly, it may happen to have a user click leading to an unsatisfactory result
page, but we can safely rely on the so called "wisdom of the crowds": good queries generate
a larger number of clicks, thus having a much significant impact on the recommendation
algorithm.

Finally, given a session σ of length n we denote σt| the head of σ, i.e., the sequence of the
first t, t < n, queries, and σ|t the tail of σ given by the sequence of the remaining n − t
queries.

Definition 1. We define a k-way shortcut a function h taking as argument the head of a
session σt|, and returning as result a set h(σt|) of k queries belonging to Q.

ASSETS Specification of post querying processing functionalities Page 4 D2.2.1.V1.0

Such definition allows a simple ex-post evaluation methodology to be introduced by means
of the following similarity function:

Definition 2. Given a satisfactory session σ ∈ S of length n, and a k-way shortcut function
h, the similarity between h(σt|) and a tail σ|t is defined as:

where f(m) is a monotonic increasing function, and function [q=σm]=1 if and only if q is equal
to σm.

In order to evaluate the effectiveness of a given shortcut function h, the average value of s
on all satisfactory sessions in S can be computed .

Definition 3. Given the set of all possible shortcut functions H, we define Search Shortcut
Problem (SSP) the problem of finding a function h ∈ H which maximizes the sum of the
values computed according to Definition 2 on all satisfactory sessions in S.

A difference between search shortcuts and query suggestion is actually represented by the
function [q=(σ|t)m], Definition 2. By relaxing the strict equality requirement, and by replacing
it with a similarity relation – i.e., [q~(σ|t)m]=1 if and only if the similarity between q and σm is
greater than some threshold – the problem reduces, basically, to query suggestion. By
defining appropriate similarity functions, Definition 2 the can be thus used to evaluate query
suggestion effectiveness as well.

Finally, we should consider the influence the function f(m) has in the definition of scoring
functions. Actually, depending on how f is chosen, different features of a shortcut
generating algorithm may be tested. For instance, by setting f(m) to be the constant
function f(m)=c, we measure simply the number of queries in common between the query
shortcut set and the queries submitted by the user. A non-constant function can be used to
give an higher score to queries that a user would have submitted later in the session, i.e.
queries closer to the last successful one. An exponential function f(m)=e

m can be exploited
instead to assign an higher score to shortcuts suggested early. Smoother f functions can be
used to modulate positional effects.

1.1.3 Generating query suggestions with Search Shortcuts

Inspired by the above SSP, we define a novel algorithm that aims to generate suggestions
containing only those queries appearing as final in satisfactory sessions. The goal is to
suggest queries having a high potentiality of being useful for people to reach their initial
goal. As hinted by the problem definition, suggesting queries appearing as final in
satisfactory sessions, in our view is a good strategy to accomplish this task. In order to
validate this hypothesis, we analyzed the Microsoft RFP 2006 dataset, a query log from the
MSN Search engine containing about 15 million queries sampled over one month of 2006
(hereinafter QL).

First, we measured that the number of distinct queries that appear as final query in
satisfactory sessions of QL is relatively small if compared to the overall number of submitted
queries: only about 10% of the total number of distinct queries in QL occur in the last
position of satisfactory user sessions. As expected, the distribution of the occurrences of
such final queries in satisfactory user sessions is quite skewed (as shown in Figure 1), thus
confirming once more that the set of final queries actually used by people is limited.

ASSETS Specification of post querying processing functionalities Page 5 D2.2.1.V1.0

queries which are final in some satisfactory sessions may obviously appear also in positions
different from the last in other satisfactory sessions. We verified that, when this happens,
these queries appear much more frequently in positions very close to the final one. About
60% of the distinct queries appearing in the penultimate position of satisfactory sessions are
also among the final queries; about 40% in positions second to the last; 20% as third to the
last, and so on. We can thus argue that final queries are usually close to the achievement of
the user information goal. We consider these queries as highly valued and high quality short
pieces of text expressing actual user needs.

The SSP algorithm we propose works by computing, efficiently, similarities between partial
user sessions (the one currently performed) and historical satisfactory sessions recorded in a
query log. Final queries of most similar satisfactory sessions are suggested to users as search
shortcuts.

Let σ′ be the current session performed by the user, and let us consider the sequence τ of
the concatenation of all terms with possible repetitions appearing in σ′t|, i.e. the head of
length t of session σ′. We now compute the value of a scoring function δ(τ, σ

s
), which

measures the similarity between the set of terms τ and current queries (i.e. queries used in
the current session) and, for each satisfactory session. Intuitively, this similarity value
measures to which extent a previous session overlaps with the user’s information need
expressed so far (represented as a bag-of-words computed through the concatenation of
terms τ). The sessions are ranked according to δ scores, and final queries of the top n ranked
sessions are used in the list of query suggestions. It is obvious that we may have different
recommendation methods, depending on how the function δ is chosen. In our particular
case, we chose δ to be computed with the similarity function used in the BM25 algorithm
[RZ09]. We opt for an IR-like metric, because we want to take increase the importace of high
discriminative words found in the context of the past sessions. BM25, and other IR-related
metrics, have been designed specifically to leverage this aspect in the context of query or
documents similarity computation. The shortcuts generation problem has been, thus,
reduced to the information retrieval task of finding highly similar sessions in response to a

Figure 1 Popularity of final queries in satisfactory sessions

ASSETS Specification of post querying processing functionalities Page 6 D2.2.1.V1.0

given sequence of queries. In our current experiments, we compute the similarity function δ
only on the current query issued by the user instead of using the whole head of the session.
This will allow us to compare the results of our work with other algorithms which produce
recommendations starting from a single query.

The idea described above is thus translated into the following process. For each unique final

query qf contained in satisfactory sessions we define what we have called a virtual

document identified by its title and its content. The title, i.e. the identifier of the document,
is exactly query string qf . The content of the virtual document is instead composed of all the
terms that have appeared in queries of all the satisfactory sessions ending with qf . At the
end of this procedure we have a set of virtual documents, one for each distinct final query
occurring in some satisfactory sessions. Just to make things more clear, let us consider a toy
example. Consider the two following satisfactory sessions: (dante alighieri→ divina

commedia→ paolo and francesca, and (divina commedia→ inferno canto V→ paolo and

francesca). We create the virtual document identified by title paolo and francesca and
whose content is the text (dante alighieri divina commedia divina commedia inferno canto

V). The virtual document actually contains also repetitions of the same term that are
considered in the context of the BM25 ranking metrics. All virtual documents are indexed
with the preferred Information Retrieval system, and generating shortcuts for a given user
session σ′ becomes simply processing the query σ′t| over the inverted file indexing such
virtual documents. We know that processing queries over inverted indexes is very fast and
scalable, and these important characteristics are inherited by our query suggestion
technique as well.

The other important feature of our query suggestion technique is its robustness with
respect to rare and singleton queries. Singleton queries account for almost 50% of the
submitted queries [S10], and their presence causes the issue of the sparseness of models
[AT05]. Since we match τ with the virtual documents obtained by concatenating all the
queries in each session, even previously unseen queries can match a virtual document and
generate high quality suggestions. Most suggestion algorithms, instead, can match only
previously submitted queries. Therefore we can generate suggestions for queries in the long
tail of the distribution those terms have some context in the query log used to build the
model.

1.1.4 Quality Assessment

Evaluating the effectiveness of a recommender system is a difficult task. We tried to avoid
the cost of expensive user-studies, and to exploit the implicit feedback present in the query
log. Thus, in our experimental evaluation we use the similarity metric defined in Definition
2, and we compute the average value of similarity over a set of satisfactory sessions. This
performance index objectively measures the effectiveness of a query suggestion algorithm
in foreseeing the satisfactory query for the session.

In particular, we measured the values of this performance index over suggestions generated
by using our Search Shortcuts (SS) solution and by using in exactly the same conditions two
other state-of-the-art algorithms: Cover Graph (CG) proposed by [BT07] and Query Flow
Graph (QFG) proposed by [BB+09a]. These algorithms are recent and highly reputed
representatives of the best practice in the field of query recommendation.

Related to the evaluation methodology based on user-studies, we propose an approach that
measures coverage and the effectiveness of suggestions against a manually assessed and
publicly available dataset. To this purpose, we exploited the query topics and the human
judgements provided by NIST for running the TREC 2009 Web Track’s Diversity Task

ASSETS Specification of post querying processing functionalities Page 7 D2.2.1.V1.0

(http://trec.nist.gov/data/web09.html). For the purposes of the TREC diversity track, NIST
provided 50 queries to a group of human assessors. Assuming each TREC query as a topic,
assessors were asked to identify a representative set of subtopics covering the whole
spectrum of different user needs/intentions. Subtopics are based on information extracted
from the logs of a commercial search engine, and are roughly balanced in terms of
popularity. Obviously the queries chosen are very different and cover different search
aspects (e.g. difficulty, ambiguity, and/or faceted search) in order to allow the overall
performance of diversification methods to be evaluated and compared. Since diversity and
topic coverage are key issues also for the query recommendation task [MLK10], we propose
to use the same third-party dataset for evaluating query suggestion effectiveness as well.

Let’s now introduce the definitions of coverage, and effectiveness.

Definition 4 (Coverage). Given a query topic A with n subtopics {a1, a2, . . . , an}, and a
query suggestion technique T, we say that T has coverage equal to c if n·c subtopics match
suggestions generated by T.

Explanatory example: A coverage of 0.8 for the top-10 suggestions generated for a query
q having 5 subtopics means that 4 subtopics of q are covered by at least one suggestion.

Definition 5 (Effectiveness). Given a query topic A with n subtopics {a1, a2, . . . , an}, and a
query suggestion technique T generating k suggestions, we say that T has effectiveness
equal to e if e·k suggestions cover at least one subtopic. An effectiveness of 0.1 on the top-
10 suggestions generated for a query q means that only one suggestion is relevant for one
of the subtopics of q.

The methodology just described has some net advantages. It is based on a publicly-available
test collection which is provided by a well reputed third-party organization. Moreover, it
grants to all the researchers the possibility of measuring the performance of their solution
under exactly the same conditions, with the same dataset and the same reproducible
evaluation criterion.

The experiments were conducted using the Microsoft RFP 2006 query log which was
preliminary pre-processed by converting all queries to lowercase, and by removing stop-
words and punctuation/control characters. The queries in the log were then sorted by user
and timestamp, and segmented into sessions on the basis of a splitting algorithm which uses
a time discriminator. We grouped into the same session all the queries issued by the same
users in a time span of 30 minutes. Noisy sessions (i.e. likely performed by software robots)
were removed. The remaining entries correspond to approximately 9M sessions. These
were split into two subsets: training set with 6M sessions and a test set with the remaining
3M sessions. The training log was used to build the recommendation models needed by CG
and QFG and used for performance comparison.

Instead, to implement our SS solution we extracted satisfactory sessions present in the
training log and grouped them on the basis of the final query. Then, for each distinct final
query its corresponding virtual document was built with the terms (with possible
repetitions) belonging to all the queries of all the associated satisfactory sessions. Finally, by
means of the Terrier search engine1, we indexed the resulting 1,191,143 virtual documents.
The possibility of processing queries on such index is provided to interested readers through
a simple web interface2. The web-based wrapper accepts user queries, interact with Terrier
to get the list of final queries (id of virtual documents) provided as top-k results, and

1 See http://terrier.org/

2 See http://searchshortcuts.isti.cnr.it

ASSETS Specification of post querying processing functionalities Page 8 D2.2.1.V1.0

retrieves and visualizes the associated query strings.

We used Definition 2 to measure the similarity between the suggestions generated by SS,
CG, and QFG for the first queries issued by a user during a satisfactory session belonging to
the test set, and the final queries actually submitted by the same user during the same
session. We conducted experiments by setting the number k of suggestions generated to 10,
and, we chose the exponential function f(m)=e

m to assign an higher score to shortcuts
suggested early. Moreover, the length t of the head of the session was set to ⌈n/2⌉, where
n is the length of the session considered. Finally, the metric used to assess the similarity
between two queries was the Jaccard index computed over the set of tri-grams of
characters contained in the queries [JJJ07], while the similarity threshold used was 0.9.

Due to the long execution times required by CG, and QFG for generating suggestions, it was
not possible to evaluate suggestion effectiveness by processing all the satisfactory sessions
in the test set. We thus considered a sample of the test set constituted by a randomly
selected group of 100 satisfactory sessions having a length strictly greater than 3. The
histogram in Figure 2 shows the distribution of the number of sessions vs. the quality of the
top-10 recommendations produced by the three algorithms. SS produces recommendations
having a quality score greater than 60% for 18 sessions out of 100. Moreover, in 36 cases
out of 100, SS generates useful suggestions when its competitors CG and QFG fails to
produce even a single effective suggestion. Indeed, CG and QFG can hardly propose good
recommendation of less frequent queries, as discussed later. On average, over the 100
sessions considered, SS obtains an average quality score equal to 0.32, while QFG and CG
achieves 0.15 and 0.10, respectively.

Figure 2 Query suggestion quality

The relevance of the suggestions generated by SS, CG, and QFG w.r.t. the TREC query
subtopics was manually assessed. The evaluation consisted in asking assessors to assign the
top-10 suggestions returned by SS, CG, and QFG to their related subtopic, for each given
TREC query. Editors were also able to explicitly highlight that no subtopic can be associated
with a particular recommendation. The evaluation process was blind, in the sense that all
the suggestions produced by the three methods were presented to editors in a single,
lexicographically ordered sequence where the algorithm which generated any specific
suggestion was hidden. Given the limited number of queries and the precise definition of
subtopics provided by NIST assessors, the task was not particularly cumbersome, and the
evaluations generated by the assessors largely agree.

ASSETS Specification of post querying processing functionalities Page 9 D2.2.1.V1.0

The histogram shown in Figure 3 plots the average coverage (Definition 4) of the associated
subtopics measured on the basis of assessor’s evaluations for the top-10 suggestions.

The comparison of the results returned by SS, CG, and QFG was performed by using all 50
TREC topics. In this Figure it cand be easily observed that SS outperforms its competitors. On
36 queries out of 50 SS was able to cover at least half of the subtopics, while CG only in two
cases reached the 50% of coverage, and QFG on 8 queries out of 50. Moreover, SS covers
the same number or more subtopics than its competitors in all the cases but 6. Only in 5
cases QFG outperforms SS in subtopic coverage (query topics 12, 15, 19, 25, 45), while in
one case (query topic 22) CG outperforms SS. Furthermore, while SS is always able to cover
one or some subtopics for all the cases, in 15 (27) cases for QFG (CG) the two methods are
not able to cover any of the subtopics. The average fraction of subtopics covered by the
three methods is: 0.49, 0.24, and 0.12 for SS, QFG, and CG, respectively.

Figure 3 Recommendation Coverage

Figure 4 reports the effectiveness (Definition 5) of the top-10 suggestions generated by SS,
QFG, and CG. Also considering this performance metric the Search Shortcuts solution results
are the better ones. SS outperforms its competitors in 31 cases out of 50. The average
effectiveness is 0.83, 0.43, and 0.42 for SS, QFG, and CG, respectively. The large difference
measured is mainly due to the fact that both CG and QFG are not able to generate good
suggestions for queries that are not popular in the training log.

Figure 4 Recommendation Effectiveness

Regarding this aspect, the histogram in Figure 5 shows the average effectiveness of the top-
10 suggestions returned by SS, CG and QFG measured for groups of TREC queries arranged
by their frequency in the training log. SS remarkably outperforms its competitors. In fact, it
is able to produce high-quality recommendations for all analyzed query categories, while CG

ASSETS Specification of post querying processing functionalities Page 10 D2.2.1.V1.0

and QFG can not produce recommendations for unseen queries. Furthermore, while SS
produces constant quality recommendations with respect to the frequency of the TREC
queries, CG and QFG show an increasing trend in the quality of recommendations as the
frequency of the TREC queries increases.

Figure 5 Average Recommendation Effectiveness on varying query frequencies

For this reason, we can assert that the SS method is very robust to data sparseness which
strongly penalizes the other two algorithms, and is able to effectively produce significant
suggestions also for singleton queries which were not previously submitted to the WSE. We
recall that singleton queries account for almost half of the whole volume of unique queries
submitted to a WSE. These are often the hardest to answer since they ask for “rare” or
poorly expressed information needs. The possibility of suggesting relevant alternatives to
these queries is more valuable than the one of suggesting relevant alternatives to frequent
queries which express common and often easier to satisfy needs.

Table 1 Suggestion example

Suggestions provided Subtopics for query:

"diversity"
SearchShortcuts Cover

Graph

Query Flow Graph

1. How is workplace
diversity achieved and
managed?

2. Find free activities and
materials for running a
diversity training
program in my office.

3. What is cultural
diversity? What is
prejudice?

4. Find quotes, poems,
and/or artwork
illustrating and

• diversity in
education

• diversity inclusion

• cultural diversity

• diversity test

• accepting diversity

• diversity poem

• diversity skills

• diverse learners
presentation

• picture of diverse
children

• advantages of

no

suggestions

• accepting diversity

• dispariging
remarks

• diverse world

• diversity director

• diversity poem

• diversity test

• minority & women

• civil liberties

• inclusion

• gender and racial
bias

ASSETS Specification of post querying processing functionalities Page 11 D2.2.1.V1.0

promoting diversity. diversity

Finally, we report in Table 1 an example of the suggestion produced by the three algorithms
for the query "diversity" which occurs only 27 times in training log, and the subtopics taken
into consideration by the TREC diversity task.

1.2 Search shortcuts specification for ASSETS

Our proposal is to integrate into ASSETS the Search Shortcuts algorithm, which was proven
to be very effective in the Web search scenario. The recommendation algorithm has a very
simple interface, but it requires model training to be performed off-line. The model training
should be repeated when a significant topic shift occurs in the query log, and therefore the
algorithm is not well tuned to answer such new queries. Usually, the training is run during
weekends when the search infrastructure has low query load. The software to be developed
for the query log analysis and indexing is described in Section 3. Below we provide the
specification of the core query recommendation service, which is also included in
Deliverable D2.0.4.

Service Name Query Suggestion service

Responsibility Query Suggestion

Provided Interfaces Suggest

Dependencies ASSETS Common, ASSETS Core, Query Logs, BM25F

Interface Name Suggest

Key concepts Queries, Shortcuts, Ranking

Operation getSuggestions

The interface Suggest hides the implementation details of the recommendation service. It
provides a simple method named getSuggestions, which provides a set of recommended
queries that the Graphical User Interface should present to the user. Below we show the
corresponding class diagrams that provide a more detailed specification of this service.

Figure 6 SuggestionsImpl class diagram

ASSETS Specification of post querying processing functionalities Page 12 D2.2.1.V1.0

In Figure 6 we show the class diagram of the domain object Suggestions which is used to
store the set of queries suggested to the user. The object is used to encapsulate for a
particular query (e.g., Pablo Picasso), the suggestions for the query ranked for relevance
(e.g., Pablo Picasso life, Guernica, Cubism …).

Figure 7 QuerySuggestionServiceImpl class diagram

In Figure 7 we show the class diagram of the query suggestion service implementation,
which exploits an index of virtual documents to provide recommendations in response to a
given query. For each received query, the Query Suggestion Service produces a Suggestions
Object containing the ranked list of suggestions.

Figure 8 QuerySuggestion client class diagram

Finally, in Figure 8, we illustrate the class diagram of the query suggestion client and its
implementation. The client defines how the other components of the ASSETS platform will
interact with the query recommendation component. Its task is to receive from the other
components the queries, then submits the queries to the query suggestion service and
returns the suggestions to the applicants. If needed, this service could be exposed externally
as a specific API-call available to third-parties.

ASSETS Specification of post querying processing functionalities Page 13 D2.2.1.V1.0

2. T2.2.2: Metadata-based Ranking

Task T2.2.2 deals with effective techniques for ranking metadata objects in the Europeana
context. The Europeana query log analysis that we conducted thanks to the tools developed
within task T2.2.3, and the literature on multi-field document retrieval, suggests that the
ranking function currently adopted by Europeana can be improved. The results of such
query log analysis are illustrated in Section 3. In the following, we first review the state of
the art in multi-field document retrieval, and we provide a specification of an advanced
metadata based ranking to be included into the ASSETS engine. In particular, we propose to
adopt the BM25F ranking function, and to exploit machine learning algorithms to best tune
its parameters. The learning step exploits the output of query log processing tools, which is
described in Section 3.

2.1 Description of BM25F

Ranking functions are one of the most important components of a document retrieval
system. A ranking function answers to the question "what is the relevance of a document d
for the user query q?". Therefore, the goodness of the ranking function adopted determines
the quality of the results returned.

The probably most widely used ranking function is BM25 (RW94), and it is still considered
the most relevant baseline. Grounded in the probabilistic language modelling theory, BM25
was designed as a non-linear combination of three important document attributes: term
frequency, document frequency, and document length. Even if originally, Web documents
where considered as composed of few fields, such as body, title, URL, BM25 uses a flat
representation of a document, where its fields are simply concatenated into a single textual
description. But we know that Europeana documents have a very rich structure and they are
described by means of many fields, each possibly playing a different role in the document
retrieval task.

BM25F (RZT04) is an extension of BM25 that exploits a document description having
multiple fields, and it is still a non-linear function, thus capable of modelling non-trivial
factors that determine the relevance of a document for a given query. Given a document d,
having fields F, and a query q, BM25F produces a score of the document computed as
follows:

where TF(t,d) measures the importance of term t for document d, and IDF(t) is the usual
inverse document frequency measuring the importance of term t in the whole collection of
document. Let df(t) be the document frequency of term t, i.e. the number of documents in
the collection containing the term t, the IDF function is defined as follows:

More precisely, BM25 and BM25F adopt a term frequency saturation function which
accounts for the fact that finding twice the term t in d, is not twice as surprising (i.e.
relevant) as finding the same term once. We can update the BM25F formula as follows:

ASSETS Specification of post querying processing functionalities Page 14 D2.2.1.V1.0

The parameter k realizes the saturation: the larger k, the more important is the variation of
term frequency. As we mentioned above, BM25F takes into account the multiple fields of
the document, and this is done when computing the term frequency component TF(t,d).
Indeed, the term frequency is computed independently for each field, and a linear
combination is computed as follows:

where wf is a weight (or boosting factor) for the field f, and TF(t,d,f) is the frequency-based
contribution of term t in the field f of document d. Finally, the frequency TF(t,d,f) is
normalized on the basis of the length of the document field f:

where occurs(t,d,f) is the actual number of occurrences of term t in the field f of document
d, ld,f is the length of the field f of document d, lf is the average length of field f across the
whole collection, and bf is a model parameter tuning the impact of document length
normalization.

BM25F can be considered the state of the art of ranking functions in multi-field document
retrieval. However, its accuracy depends on the ability to fine-tune its parameters k, wf, bf.
Note that for |F| fields there are 2|F|+1 parameters to be tuned.

Before describing how to fine-tune these parameters automatically, we add some
comments on the Lucene ranking function. Lucene is a popular open source search engine,
being at the core of SOLR, which is the search infrastructure adopted by Europeana and
ASSETS. Lucene is able to rank multi-field documents by exploiting the following scoring
function:

Notice that the frequency of each term is saturated with the square root function, and that
the score is a linear combination of a per-field contribution. The effect is that a document
matching a single query term over several fields could have a larger score than a document
matching several query terms in one field only, and this may significantly decrease the
retrieval precision compared to BM25F, as showed in (PA+10).

2.2 Learning To Rank

In the previous section, we have described BM25F that can be considered as a non-trivial
combination of many relevance measures to a given query, one for each field of the
document. We have also mentioned that BM25F has a number of parameters that need to
be fine tuned in order to achieve an optimal ranking function. This parameter search task
consists in optimizing some cost function that measures the goodness of the rankings.

ASSETS Specification of post querying processing functionalities Page 15 D2.2.1.V1.0

This learning problem is strictly related to another problem arising in modern information
retrieval systems. Traditionally, only a small number of features have been used to devise
ranking functions. BM25F is among these traditional methods, since it includes simply term
frequency, inversed document frequency, and document length. More recently, a number
of additional features have proved their utility. They include structural features such as title,
anchor text, URL of a Web page, and also query-independent features such as PageRank,
URL length, and many others. The large number of features makes it impossible to
empirically fine-tune a ranking function accounting for all of them. This trend calls for new
supervised methods for building effective ranking functions, which we call Learning to Rank
algorithms.

Existing methods fall into two categories, "point-wise training" and "pair-wise training". In
the former, single documents are labelled in relation to a given query, e.g. relevant or
irrelevant. In the latter, the labelling consists pair-wise preferences, e.g. document a is more
relevant than document b. Both allow to exploit click-through data, which are a gold-mine of
implicit user relevance feedback.

Click-through data can be thought as triples (q, r, c) where q is a query, r is the ranked list of
documents appearing in the result page presented to the user, and c is a subset of r
containing the list of documents the user clicked on (sorted by timestamp). Pair-wise
preferences can be simply computed by exploiting such data. Given a ranked list of results r
= r1, r2, … , r10 , and the user clicks on some of them, let for example c = r2, r6 and r7, we can
state that:

1. Clicked documents r2, r6, and r7 are relevant for query q;

2. The document with rank r2 is more relevant than document with rank r1, and
document with rank r6 more than document with rank r5;

3. The document with rank r6 is more relevant than documents with ranks r1, … , r5

Hence a relevance relation R on pairs of documents can be devised: for a query q and a
collection of ranked documents D = {r1, r2, … , rm} if a document ri is more important than a
document rj the couple (ri, rj) is in R. In the previous example, we would have R = ((r2, r1), (r6,

r5), (r6, r4), (r6, r3), (r6, r2), (r6, r1)).

In the following we review some important learning to rank approaches that can exploit
such pair-wise preferences to optimize the ranking function parameters.

2.2.1 Ranking SVM

In (HGO00), a method called Ranking SVM is proposed. The idea is to transform pair-wise
preferences into a classification problem solved with a support vector machine.

First assume that the relatedness of a query q to a document d can be expressed as a

function of a vector of N features x, thanks to a mapping function Φ(q,d)=x. The vector x
may be very complex, containing hundreds of features, e.g. BM25 computed on every single

document field. The training set consists in a collection of pair relations in the form xiffffxj
meaning that xi is more important than xj. A ranking function f should be such that: xiffffxj

⇔f(xi)>f(xj). Second, we assume that f is a linear function of x defined as follows:

where w is a set of weights, and 〈⋅,⋅〉 stands for the inner product. We can thus obtain:

ASSETS Specification of post querying processing functionalities Page 16 D2.2.1.V1.0

In principle, e.g. due to noise in the training set, there might not exist a function f, or
equivalently a weight vector w, such that the above inequality is satisfied for every instance
of the training set. The goal is to find w such that maximizes the number of training
instances for which the corresponding inequality is fulfilled. This is done by introducing non

negative slack variables ξi,j and reformulating the learning to rank problem into an
optimization problem:

subject to: and .

This formulation is equivalent to an SVM classification problem formulation, where the goal
is to build a classifier recognizing correctly ordered versus incorrectly ordered document

pairs. The SVM classifiers can thus be turned in a ranking function. Let ω be the solution of
the SVM classification problem, the score of a document d relative to a query q is computed
as follows:

In HGO00 it is also shown that this SVM formulation allows to adopt any other non-linear
kernels, and not necessarily the linear inner product. Although, a non linear kernel may
produce a less efficient ranking function.

2.2.2 RankNet

In BS+05, a similar approach based on neural networks is presented. As with Ranking SVM,
the training is done with preference pairs. Given xiffffxj, we denote with si and sj their score
f(xi) and f(xj). Then, the probability that xi should be ranked higher than xj in the result list, is
computed with a sigmoid function:

The sigmoid function is widely used in neural networks and it is known to produce good
probability estimates. The predicted probability is compared against the target probability
∏ij which is learnt from the training. A cross entropy cost function C is introduced:

Since we assume that our training pairs are in the form xiffffxj then ∏ij is always equal to 1, i.e.
document xi has (observed) 100% probability of being more important than document xj.
Thus the model simplifies to:

In the above, we did not specify the ranking function f, but we can assume it is a function of
some model parameters w, similarly to what we did with Ranking SVM, without fixing any
specific ranking function. Our goal is to find the model parameter that minimizes the cost
function C. The cost can be optimized via gradient descent by taking the derivative of C with
respect to each parameter of the model wk:

ASSETS Specification of post querying processing functionalities Page 17 D2.2.1.V1.0

Therefore, to update the model parameters it is needed to be able differentiate the cost
function with respect to the scores, and more importantly, to differentiate the ranking
function f with respect to each model parameter. Not only it is possible to plug the above
derivative in a neural network, but also to exploit a gradient descend considering BM25F as
a scoring function [TZ+06].

2.2.3 LambdaRank

RankNet optimizes a specific cost function to improve the scoring function of the retrieval
system. The assumption is that the optimization measure matches the target measure, but
unfortunately typical IR costs are non differentiable everywhere and require sorting by
model score, which is itself a non-differentiable operation. In other words, we would prefer
to specify how the rank order of documents needs to be changed, rather than tuning a
ranking function leading to the desired ranking order. LambdaRank [BRL06] exploits the fact
that a neural network only needs to know the gradients of the optimized function w.r.t. the
model parameters, i.e. the IR measure w.r.t. the document scores, and does not need to
know the cost function itself. The gradients can be defined by specifying rules describing
how swapping the position of two documents, after sorting them by their score relative to a
given query, affects the IR quality measure. In conclusion, we do not need to find a derivable
function approximating a target IR evaluation measure, but it is sufficient to define the how
a change of position in a ranked list effects the evaluation measure.

Let's first introduce the one of the most commonly used IR quality measure. The Normalized

Discounted Cumulative Gain (NDCG) of a result list for a query q is:

where rj is a relevance level of the j-th result, L is a truncation level determining the number
of results evaluated, and Ni is a normalization constant such that a perfect ordering would
achieve NCDG=1.

The LambdaRank gradient λj, is defined to be a smooth approximation to the gradient of
the evaluation measure w.r.t. the score of the document ranked at position j, that is an
approximation of how the ranking quality would change by moving the document from
position j.

We report the LamdaRank gradient discussed in [BRL06], but it has been shown that
LamdaRank gradients can be devised for many other IR evaluation function [DSB09]. The
proposed gradient is a combination of the derivative of the RankNet cost scaled by the
NDCG gain resulting from swapping two documents. In detail, assume that document i and j
have scores si and sj, relevance level ri and rj, and let oij be the cost difference si-sj. Note that
differently from RankNet we do not assume that documents pair are always such that xiffffxj.
Then, the RankNet cost is equivalent to:

where Sij equals 1 if li>lj, and -1 vice versa. Its derivative according to the score difference is:

ASSETS Specification of post querying processing functionalities Page 18 D2.2.1.V1.0

The LamdaRank gradient is then defined as:

where N is the reciprocal of the maximum DCG for the given query, and ri and rj are the rank

position of the document i and j. Note that the sign of λij depends only on Sij, i.e. on their
relative importance.

The LamdaRank gradient λi for a single document i is computed by marginalizing over all the

available pair-wise gradients λij as follows:

To sum up, we are training a neural network to score document with respect to a given
query. The neural network optimizes a cost function which is a smooth approximation of the
NDCG, and which can be extended to other IR evaluation functions. In particular, it is
sufficient to specify how the cost changes when the order of the ranked document changes,
by introduced the so called LambdaRank gradients. These gradients are finally plugged into
a neural network learning process.

 The authors of [SB09] show that it is possible to achieve interesting result by training such a
neural network on the signals given by the BM25 from each single field. One disadvantage
of the approach, is that the generated ranking function is a neural network from which it is
not easy to understand the importance of each attribute. Also, implementing a neural
network as a ranking function may not be an efficient solution.

2.2.4 LineSearch or direct optimization of BM25F

The above learning to rank approaches exploit BM25 by using the BM25 rank on each
document field as a feature of the document/query pair. Indeed, they are able to find
possibly non-linear function that may resemble BM25F, but they cannot be considered as a
tuning process of the BM25F parameters. An interesting approach for Europeana would be
to find the best parameter set for BM25F, and this can be done with a greedy exploration of
the parameter space. An interesting approach based on the line search algorithm is
presented in [TZ+06].

The advantage of the line search algorithm is that it can be adapted so as to exclude any
dependency on the gradients of the cost function to be optimized, and rather to consider
actual IR evaluation functions such as NDCG.

The algorithm works as follows. Given an initial point in the parameter space, a search along
each co-ordinate axis is performed by varying one parameter only and keeping fixed the
others. For each sample point, the NDCG is computed, and the location corresponding to
the best NDCG is recorded. Such location identifies a promising search direction. Therefore,
a line search is performed along the direction from the starting point to the best NDCG
location. If the parameter space has dimension k, we need to perform k+1 line searches to
complete an iteration, or epoch, and possibly move to an improved solution. The new
solution is then used as the starting point of the next iteration, and the sampling scale is
reduced. This iterative process continues until no improvement is found, or a maximum
number of epochs is reached.

The authors of [TZ+06] show that it is thus possible to tune the parameters of BM25F in

ASSETS Specification of post querying processing functionalities Page 19 D2.2.1.V1.0

order to obtain better ranking results.

2.3 Metadata based ranking for ASSETS

We propose to replace the Lucene ranking function with BM25F. The latter has proven to be
for effective, and has efficiency guarantees compared to neural network based approaches.
The new ranking service should exploit a learning process where its parameters are fine-
tuned on the basis of click through information contained in the query logs. The learning
process can be costly, depending on the size of the query log and on the size of the
collection. But this training is performed off-line, and its cost is justified by the improvement
in the efficacy of the search system. We plan to devise a ranking function that best suits
Europeana actual users, starting from an evaluation of some of the above described
techniques.

Service Name BM25F Scoring function

Responsibility (i) Search & Retrieval, (ii) Learn from query logs BM25F's parameters

Provided Interfaces BM25F

Dependencies ASSETS Common, ASSETS Core, Query Logs

Interface Name BM25F

Key concepts Queries, Learning to rank, Ranking, Query Logs

Operation search , learning to rank

The service this provides to main operation: search and learning to rank.

Figure 9 Ranking parameters class diagram

Figure 9 shows the domain objects for the service:

• QueryParams models the user query: it contains the text of the query and the filters

ASSETS Specification of post querying processing functionalities Page 20 D2.2.1.V1.0

possibly added by the user to refine the query (for example TYPE:IMAGE filters only
documents containing images).

• RankingParameters models the set of free parameters for the ranking function. The
method getParameters() returns a dictionary where, for each parameter, there is
the value optimizing the quality of the ranking function, learned from the query
logs.

Figure 10 BM25F Scoring function class diagram

Figure 10 shows the class diagram of the BM25F scoring function implementation. The
service allows to process a query using the BM25F scoring function (method search) and
returns a list of AssetsFullDoc. Furthermore, the service exposes a method to retrieve a good
tuning for the parameters in the scoring function (that the developer has to set in the SOLR
configuration file).

ASSETS Specification of post querying processing functionalities Page 21 D2.2.1.V1.0

Figure 11 BM25F Scoring function client class diagram

In Figure 11, we show the class diagram of the BM25F client and its implementation. The
client defines how the other components of the ASSETS platform will interact with the
BM25F component. Its task is to receive from the other components the queries
(encapsulated in a QueryParams object, that may contain also filters and other parameters),
then submits the queries to the SOLR engine and returns the results to the applicants
(function search()). Furthermore, the client also exposes a method to require the BM25F’s
parameters learning process (method learnParameters()). If a user invokes this method,
(s)he obtains a list of parameters with their respective tuned values (encapsulated in a
RankingParameters object).

2.3.1 BM25F Solr Plugin

For performance reasons, we decided to implement the BM25F ranking function inside Solr.

The ranking function needs to access several values that can be found only in the document
index, that are:

• The field term frequency, i.e., how many times a term occurs in a field of a
document (e.g., “description”);

• The inverse document frequency, i.e., how many documents contain a specified
term;

• The average length of a field, i.e., the average length (in terms) of a field computed
on the whole collection.

We integrated the ranking function as a Solr plugin, without touching the code core. This
will allow to update Solr to new versions without applying any patch. The admin can import
the plugin from the Solr’s configuration file (solrconfig.xml) by simply adding this few lines
to the file:

ASSETS Specification of post querying processing functionalities Page 22 D2.2.1.V1.0

<queryParser name="bm25f"
class="bm25f.parser.BM25FQParserPlugin">
<float name="k1">1.0</float>
<str name="mainField">text</str>
<lst name="averageLengthFields">
<float name="text">500</float>
<float name="title">20</float>
<float name="description">300</float>
<float name="YEAR">4</float>
<float name="date">10</float>
</lst>
<lst name="fieldsBoost">
<float name="text">1.0</float>
<float name="title">5.0</float>
<float name="description">3.0</float>
<float name="YEAR">1.0</float>
<float name="date">1.0</float>
</lst>
<lst name="fieldsB">
<float name="text">0.75</float>
<float name="title">0.75</float>
<float name="description">0.75</float>
<float name="YEAR">0.75</float>
<float name="date">0.75</float>
</lst>

</queryParser>

The configuration file allows the admin to change the parameters of the ranking function by
using his domain knowledge or by calling the learnParameters() method. The customizable
parameters are:

• K1, the saturation factor (default 1.0)

• fieldBoost, containing the boosts to apply on the various fields;

• fieldB, containing the boosts to apply to the length of a field;

• averageLengths, the average lengths of the fields, because solr does not have this
data. The method learnParameters will also return an estimation of these lengths.

Once the plugin has been plugged in, the BM25F ranking function can be called by simply
adding to the get request the parameter defType=bm25f, e.g. :

http://mysolrmachine:8983/solr/select/?defType=bm25f&q=leonardo%20da%20vinci

ASSETS Specification of post querying processing functionalities Page 23 D2.2.1.V1.0

3. T2.2.3: Text Indexing and Retrieval

3.1 Query Log Analysis

A query log keeps track of historical information regarding past interactions between users

and the retrieval system. It usually contains tuples 〈qi,ui,ti,Vi,Ci〉 where for each submitted
query qi, the following information is available: i) the anonymized identifier of the user ui, ii)
the submission timestamp ti, iii) the set Vi of documents returned by the search engine, and
iv) the set Ci of documents clicked by ui. Therefore, a query log records both the activities
conducted by users, e.g. the submitted queries, and an implicit feedback on the quality of
the retrieval system, e.g. the clicks.

Here, we consider a query log coming from Europeana portal, relative to the time interval
ranging from August 27, 2010 to February, 24, 2011. This is a six months worth of users'
interactions, resulting in 1,382,069 distinct queries issued by users from 180 countries
(3,024,162 is the total number of queries). We pre-processed the entire query log in order
to remove noise (e.g., stream of queries submitted by software robots instead of humans).

It is worth noticing that 1,059,470 queries (i.e., 35% out of the total) also contain a filter
(e.g., YEAR:1840). These filters are used to implement faceted search. Users can filter results
by type, year or provider simply by clicking on a button, so it is reasonable that they try to
refine retrieved results by applying a filter, whenever they are not satisfied. Furthermore,
we find that users prefer filtering results by type, i.e., images, texts, videos or sounds.
Indeed, we measured that 20% of the submitted queries contains a filter by type. This is a
proof of the skilfulness of Europeana users and their willingness to exploit non trivial search
tools to find the desired contents. This also means that advanced search aids, such as query
recommendation, would be surely exploited.

Similarly to Web query log analysis [SM+99], we discuss two aspects of the analysis task: i)
an analysis on the query set (e.g., average query length, query distribution, etc.) and ii) a
higher level analysis of search sessions, i.e., sequences of queries issued by users for
satisfying specific information needs.

Figure 12 Query Frequency Distribution

Figure 13 Country query distribution

ASSETS Specification of post querying processing functionalities Page 24 D2.2.1.V1.0

3.1.1 Query Analysis

First we analyzed the load distribution on the Europeana portal. An interesting analysis can
be done on the queries themselves. Figure 12 shows the frequency distribution of queries.

As expected, the popularity of the queries follows a power-law distribution (p(x)∝k·x
-α),

where x is the popularity rank. The best fitting α parameter is α= 0.86, which gives a hint

about the skew in the frequency distribution. The larger α the larger is the portion of the log

covered by the top frequent queries. Both [M00] and [BG+07] report a much larger α value
of 2.4 and 1.84 respectively from a Excite and a Yahoo! query log.

Such small value of α means that the most popular queries submitted to Europeana do not
account for a significantly large portion of the query log. Indeed, since Europeana is strongly
focussed on the specific context of cultural heritage, its users are likely to be more skilled
and therefore they tend to use a more diverse vocabulary.

In addition, we found that the average length of queries is 1.86 terms, which is again a
smaller value than the typical value observed in Web search engine logs. We can argue that
the Europeana user has a more rich vocabulary, with discriminative queries made of specific
terms.

Figure 13 shows the distribution of the queries grouped by country. France, Germany, and
Italy are the three major countries accounting for about the 50% of the total traffic of
queries submitted to the Europeana portal.

Figure 14 reports the number of queries submitted per day. We observe a periodic
behaviour over a week basis, with a number of peaks probably related to some Europeana
dissemination or advertisement activities. For example, we observe several peaks between
the 18th and the 22nd November, probably due to the fact that, in those days, Europeana
announced to have reached a threshold of 14 million of indexed documents.

Figure 15 shows the load on the Europeana portal on a per hour basis. We observe a
particular trend. The peak of load on the Europeana portal is in the afternoon, between 15
and 17. It is different from commercial Web search engines where the peak is reached in the
evening, between the 19 and the 23 [BJ+04]. A possible explanation of this phenomenon

Figure 14 Daily Query Frequency Distribution

Figure 15 Hourly Query Frequency Distribution

ASSETS Specification of post querying processing functionalities Page 25 D2.2.1.V1.0

could be that the Europeana portal is mainly used by people working in the field and thus,
mainly accessed during working hours. From the other side, a commercial Web search
engine is used by a wider range of users looking for the most disparate information needs
and using it through all the day.

3.1.2 Session Analysis

To fully understand user behaviour, it is important to analyze also the sequence of queries
she submits. Indeed, every query can be considered as an improvement of the previously
done by the user to better specify her information need.

Several techniques have been developed to split the queries submitted by a single user into
a set of sessions [BB+08,JK08,LO+11]. We adopted a very simple approach which has proved
to be fairly effective [SM+99]. We exploit a 5 minutes inactivity time threshold in order to
split the stream of queries coming from each user. We assume that if two consecutive
queries coming from the same user are submitted within five minutes they belong to the
same logical session, whereas if the time distance between the queries is larger, the two
queries belong to two different interactions with the retrieval system.

By exploiting the above time threshold, we are able to devise 404,237 sessions in the
Europeana query log. On average a session lasts about 276 sec, i.e., less than 5 minutes,
meaning that, under our assumption, Europeana's users complete a search activity for
satisfying an information need within 5 minutes. The average session length, i.e., the
average number of queries within a session, is 7.48 queries. This number of queries is a
interesting evidence that the user is engaged by the Europeana portal, and she is willing to
submit many queries to find the desired result.

Moreover, we distinguish between successful and unsuccessful sessions. According to
[BC+09], a session is supposed to be successful if its last query has got a click associated. To
this end, we find 182,280 occurrences of successful sessions in the Europeana query log,
that is about 45% of the total. We notice that in [BG+07] it was observed a much larger
fraction of successful sessions, about 65%.

Figure 16 Successful vs. Unsuccessful sessions' length distribution

Figure 16 shows the distributions of session lengths, both for successful and unsuccessful
sessions. On the x-axis the number of queries within a session is plotted, while on the y-axis

ASSETS Specification of post querying processing functionalities Page 26 D2.2.1.V1.0

the frequencies, i.e., how many sessions to contain a specific number of queries are
reported. We expect successful sessions contain on average less queries than unsuccessful
ones, due to the ability of the retrieval system to return early high quality results in
successful session. The fact that the session length distributions are very similar, suggests
that high quality results are not in the top pages, and that the Europeana ranking can be
improved in order to present interesting results to the user earlier, thus reducing the
successful session length with a general improvement of the user experience.

Table 2 Comparison of Europeana and Web users

Finally, in Table 2 we summarize some statistics extracted both from the analysis of the
Europeana query log as well as from general purpose Web Search Engines historical search
data.

3.2 Indexing and retrieval of query log information for ASSETS

The goal of task T2.2.3 is to devise a set of query log processing tools needed by other
services, in particular for extracting user behavioural patterns needed for improving the
ASSETS ranking function and for providing the model used by the query recommendation
service.

Service Name Query Log Indexing

Responsibility Cleaning and indexing of query log information for learning.

Provided Interfaces BuildIndex, GetUserSession, GetQueryPopularity

Dependencies ASSETS Common, ASSETS Core, Query Logs

Interface Name QueryLogIndexing

Key concepts Session Detection, Data cleaning

Operation Analysis and indexing of query log index

This includes non-trivial activities such as query log cleaning, analysis and indexing
accessible by any ASSETS component via the QueryLogIndexing service interface.

In Figure 17 we show the class diagram modelling query log data and session information.
QueryLogRecord describes the object modelling a record in the query log. It
representsRepresents a user interaction with the portal (submitting a query, clicking on a
results, etc.). Session models a user query session. Queries by the same user are split in
different sessions on the basis of the time interval between consecutive queries.

 Europeana Web Search Engines

avg. query terms 1.86
2.35 [M00]

2.55 [SM+99]

query distribution (i.e., power-law's α) 0.86
2.40 [M00]

1.84 [BG+07]

avg. queries per session 7.48 2.02 [SM+99]

% of successful sessions 45 65 [BM+10]

ASSETS Specification of post querying processing functionalities Page 27 D2.2.1.V1.0

Figure 17 QueryLogRecImpl class diagram

ASSETS Specification of post querying processing functionalities Page 28 D2.2.1.V1.0

Figure 18 QueryLogIndexing class diagram

Finally, in Figure 18 we report the class diagram of the query log indexing service. The
service accomplishes the task of retrieving the query log, splitting the log into user sessions,
computing relevant statistics and other info to be used by the query suggestion service and
by the metadata based ranking. More in detail:

• initIndex and insertQueryLog allow to create a newIndex, and to add new query log.

• getUserSessions, getNumberOfDistintUsers, getNumberOfSessions,

getNumberOfQueries, getNumberOfDistintQueries, getAverageQueryLength,

getTopQueriesWithFrequencies, getNumberOfSessionsForDay,

getNumberOfSessionsForHour, getSession , getUserSessionIds allow to retrieve
statistics on the indexed query logs (also filtering on the date)

Notice that the service executes implicitly the removal of noise from the query log, e.g. bots
interactions.

ASSETS Specification of post querying processing functionalities Page 29 D2.2.1.V1.0

Figure 19 QueryLogIndexing client class diagram

In Figure 19, we illustrate the class diagram of the Query Log Indexing client and its
implementation. The client defines how the other components of the ASSETS platform will
interact with the Query Log Indexing component. This component allows the users to obtain
useful statistics on the user searches. More in detail, a user can retrieve:

• the session ids by a particular user (getUserSessions);

• the distinct number of users (getNumberOfDistintUsers);

• the distinct number of sessions (getNumberOfSessions);

• the number of queries (getNumberOfQueries);

• the number of distinct queries (getNumberOfDistintQueries);

• the average length of a query in number of terms (getAverageQueryLength);

• the number of sessions per day (getNumberOfSessionsForDay);

• the number of sessions per hour (getNumberOfSessionsForHour) ;

• the most frequent queries (getTopQueriesWIthFrequencies);

• the sessions associated with a specific IP address (GetUserSessionsIds);

• a particular session object (getSession).

The user can also refine his search by specifying in the method a starting and an ending
date. In this way, the statistics will concern only the queries submitted in the specified time
period. Finally, the user can build a new query log index (initIndex), or index a new file
containing query log records from Europeana (insertQueryLog).

ASSETS Specification of post querying processing functionalities Page 30 D2.2.1.V1.0

4. Conclusions

This deliverable details the ASSETS services that are developed by the CNR team within tasks
"T2.2.1 Post Querying Processing", "T2.2.2 Metadata based ranking" and "T2.2.3 Text
Indexing and Retrieval". For each activity, the deliverable contains a related work section
surveying the state of the art on the particular topic; a detailed description of the solution
devised for implementing the service under the ASSETS project umbrella; and the
specification of the APIs designed for service invocation. The development of the prototypes
for these services is undergoing. At the time of writing this document we are about to have
a first implementation of all the services described above. The first prototypes do not
support the full service functionality, but a connected subset of them is already developed
in order to showcase the overall post query processing process. Moreover, the current
implementations are already integrated in the ASSETS platform.

ASSETS Specification of post querying processing functionalities Page 31 D2.2.1.V1.0

5. References

AT05 Adomavicius, G., Tuzhilin, A. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE 17
(6), 734–749. 2005.

BB+08 Boldi,P.,Bonchi,F.,Castillo,C.,Donato,D.,Gionis,A.,Vigna,S. The query-flow graph:
model and applications. In: Proc. CIKM’08. ACM 2008.

BB+09a Boldi, P., Bonchi, F., Castill2o0, C., Donato, D., Vigna, S.. Query suggestions using
query-flow graphs. In: Proc. WSCD’09. ACM. 2009.

BB+09b Boldi, P., Bonchi, F., Castil1lo0, C., Vigna, S. From ’dango’ to ’japanese cakes’:
Query reformulation models and patterns. In: Proc. WI’09. IEEE. 2009.

BC+09 Baraglia, R., Cacheda, F., Carneiro, V., Fernandez, D., Formoso, V., Perego, R.,
Silvestri, F. Search shortcuts: a new approach to the recommendation of
queries. In: Proc. RecSys’09. ACM, New York, NY, USA. 2009.

BG+07 Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri, F.
The impact of caching on search engines. In: Proc. SIGIR’07. pp. 183–190. ACM,
New York, NY, USA. 2007.

BJ+04 Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O.. Hourly
analysis of a very large topically categorized web query log. In: Proc. SIGIR’04.
ACM Press. 2004.

BM+10 Broccolo, D., Marcon, L., Nardini, F.M., Perego, R., Silvestri, F.: An efficient
algorithm to generate search shortcuts. Tech. Rep. 2010-TR-017, CNR ISTI Pisa.
2010.

BRL06 C. Burges, R. Ragno, and Q.V. Le. Learning to rank with non-smooth cost
functions. In Advances in Neural Information Processing Systems (NIPS), 2006.

BS+05 Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of
the 22nd international conference on Machine learning (ICML '05), 2005.

BT07 Baeza-Yates, R., Tiberi, A. Extracting semantic relations from query logs. In:
Proc. KDD’07. ACM. 2007.

DSB09 Pinar Donmez, Krysta M. Svore, and Christopher J.C. Burges. On the local
optimality of LambdaRank. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval (SIGIR '09),
2009.

HGO00 R. Herbrich, T. Graepel, and K. Obermayer. Large Margin Rank Boundaries for
Ordinal Regression. Advances in Large Margin Classifiers, pages 115-132, 2000.

JJJ07 Jarvelin, A., Jarvelin, A., Jarvelin, K. s-grams: Defining generalized n-grams for
information retrieval. IPM 43 (4), 1005– 1019. 2007.

JK08 Jones, R., Klinkner, K.L.. Beyond the session timeout: automatic hierarchical seg-
mentation of search topics in query logs. In: CIKM ’08. pp. 699–708. ACM 2008.

LO+11 Lucchese, C., Orlando, S., Perego, R., Silvestri, F., Tolomei, G.: Identifying task-
based sessions in search engine query logs. In: Proc. WSDM’11. pp. 277–286.

ASSETS Specification of post querying processing functionalities Page 32 D2.2.1.V1.0

ACM, New York, NY, USA 2011.

M00 Markatos, E.P. On caching search engine query results. In: Computer
Communications, 2000.

MLK10 Ma, H., Lyu, M. R., King, I. Diversifying query suggestion results. In: Proc.
AAAI’10. AAAI. 2010.

PA+10 José Pérez-Agüera, Javier Arroyo, Jane Greenberg, Joaquin Iglesias, Victor
Fresno. Using BM25F for semantic search. SEMSEARCH '10: Proceedings of the
3rd International Semantic Search Workshop (2010)

RW94 S. Robertson and S. Walker. Some simple effective approximations to the 2-
Poisson model for probabilistic weighted retrieval. In ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pages 345–354,
1994.

RZ09 Robertson, S., Zaragoza, H. The probabilistic relevance framework: Bm25 and
beyond. Found. Trends Inf. Retr. 3 (4), 333–389. 2009.

RZT04 S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple
weighted fields. In ACM Conference on Information Knowledge Management
(CIKM), pages 42–49, 2004.

S10 Silvestri, F. Mining query logs: Turning search usage data into knowledge.
Foundations and Trends in Information Retrieval 1 (1-2), 1–174. 2010.

SB09 Krysta M. Svore and Christopher J.C. Burges. 2009. A machine learning approach
for improved BM25 retrieval. In Proceeding of the 18th ACM conference on
Information and knowledge management (CIKM '09).

SM+99 Silverstein, C., Marais, H., Henzinger, M., Moricz, M. Analysis of a very large web
search engine query log. SIGIR Forum 33, 6–12. September 1999.

TZ+06 Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. Optimisation methods for ranking functions with multiple parameters.
In Proceedings of the 15th ACM international conference on Information and
knowledge management (CIKM '06), 2006.

